The structure of the sets of nonuniformness of weak exponential dichotomous linear differential systems
Trudy Instituta matematiki, Tome 23 (2015) no. 1, pp. 12-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Linear $n$-dimensional system with piecewise continuous and bounded coefficients on the time half-line is called weak exponential dichotomous system if there exist positive constants $\nu_1$ and $\nu_2$ and a decomposition $\mathbb{R}^n=L_-\oplus L_+,$ such that system's solutions satisfy two inequalities for arbitrary $t\ge s\ge0$: а) if $x(0)\in L_-,$ then $\|x(t)\|\le c_1(x)e^{-\nu_1(t-s)}\|x(s)\|;$ b) if $x(0)\in L_+,$ then $\|x(t)\|\ge c_2(x)e^{\,\nu_2(t-s)}\|x(s)\|,$ where $c_1(x)$ and $c_2(x)$ are positive constants, which, in general, depend on the choice of the solutions ($c_1(x)\ge1$ and $c_2(x)\le1$). For $\varepsilon\in(0,1]$ the set of $x(0)\in L_-,$ for which one cannot take $c_1(x)=\varepsilon^{-1}$ in the estimate а) is called the first $\varepsilon$-nonuniformness set, and the set of $x(0)\in L_+,$ for which one cannot take $c_2(x)=\varepsilon$ in the estimate b) is called the second $\varepsilon$-nonuniformness set of weak exponential dichotomous linear differential system. We obtain the necessary and sufficient condition for one-parameter family of sets depending on a parameter $\varepsilon\in(0,1]$ to be the first (second) $\varepsilon$-nonuniformness sets of a weak exponential dichotomous system.
@article{TIMB_2015_23_1_a1,
     author = {E. B. Bekriaeva},
     title = {The structure of the sets of nonuniformness of weak exponential dichotomous linear differential systems},
     journal = {Trudy Instituta matematiki},
     pages = {12--26},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a1/}
}
TY  - JOUR
AU  - E. B. Bekriaeva
TI  - The structure of the sets of nonuniformness of weak exponential dichotomous linear differential systems
JO  - Trudy Instituta matematiki
PY  - 2015
SP  - 12
EP  - 26
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a1/
LA  - ru
ID  - TIMB_2015_23_1_a1
ER  - 
%0 Journal Article
%A E. B. Bekriaeva
%T The structure of the sets of nonuniformness of weak exponential dichotomous linear differential systems
%J Trudy Instituta matematiki
%D 2015
%P 12-26
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a1/
%G ru
%F TIMB_2015_23_1_a1
E. B. Bekriaeva. The structure of the sets of nonuniformness of weak exponential dichotomous linear differential systems. Trudy Instituta matematiki, Tome 23 (2015) no. 1, pp. 12-26. http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a1/

[1] Perron O., “Die Stabilitätsfrage bei Differentialgleichungen”, Math. Zeitschr., 32:5 (1930), 703–728 | DOI | MR | Zbl

[2] Maizel A. D., “Ob ustoichivosti reshenii sistem differentsialnykh uravnenii”, Trudy Uralskogo politekh. in-ta. Ser. mat., 51 (1954), 20–50 | MR

[3] Massera J. L., Schäffer J. J., “Linear differential equations and functional analysis, I”, Ann. Math., 67:3 (1958), 517–573 | DOI | MR | Zbl

[4] Lyapunov A. M., Sobr. soch., V 6 t., v. 2, M.–L., 1956

[5] Anosov D. V., “Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, Trudy Mat. in-ta im. V. A. Steklova, 90, M., 1967

[6] Barabanov E. A., Konyukh A. V., “Ravnomernye pokazateli lineinykh sistem differentsialnykh uravnenii”, Differents. uravneniya, 30:10 (1994), 1665–1676 | MR | Zbl

[7] Bekryaeva E. B., “O ravnomernosti otsenok norm reshenii eksponentsialno dikhotomicheskikh sistem”, Differents. uravneniya, 46:5 (2010), 626–636 | MR | Zbl

[8] Khausdorf F., Teoriya mnozhestv, M.–L., 1937