A generalization of John--Nirenberg's inequailty
Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 63-73

Voir la notice de l'article provenant de la source Math-Net.Ru

In work the generalization $BMO_\varphi$ of space of $BMO$ for functions on space of gomogeneous type that defined by integral $\varphi$-oscillations is studied. The analog of John–Nirenberg's inequality for functions from these classes is proved. As a corollary we prove coincidence of the classes $BMO_\varphi$ for rather wide class of functions $\varphi$. Furthermore, generalizations of Kampanato–Meyers's and Spanne's theorems are obtained.
@article{TIMB_2014_22_2_a6,
     author = {A. I. Porabkovich and R. V. Shanin},
     title = {A generalization of {John--Nirenberg's} inequailty},
     journal = {Trudy Instituta matematiki},
     pages = {63--73},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a6/}
}
TY  - JOUR
AU  - A. I. Porabkovich
AU  - R. V. Shanin
TI  - A generalization of John--Nirenberg's inequailty
JO  - Trudy Instituta matematiki
PY  - 2014
SP  - 63
EP  - 73
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a6/
LA  - ru
ID  - TIMB_2014_22_2_a6
ER  - 
%0 Journal Article
%A A. I. Porabkovich
%A R. V. Shanin
%T A generalization of John--Nirenberg's inequailty
%J Trudy Instituta matematiki
%D 2014
%P 63-73
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a6/
%G ru
%F TIMB_2014_22_2_a6
A. I. Porabkovich; R. V. Shanin. A generalization of John--Nirenberg's inequailty. Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 63-73. http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a6/