Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2014_22_2_a6, author = {A. I. Porabkovich and R. V. Shanin}, title = {A generalization of {John--Nirenberg's} inequailty}, journal = {Trudy Instituta matematiki}, pages = {63--73}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a6/} }
A. I. Porabkovich; R. V. Shanin. A generalization of John--Nirenberg's inequailty. Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 63-73. http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a6/
[1] Heinonen J., Lectures on analysis on metric spaces, Springer-Verlag, New York–Berlin–Heidelberg, 2001 | MR | Zbl
[2] John F., Nirenberg L., “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14:2 (1961), 415–426 | DOI | MR | Zbl
[3] Spanne S., “Some function spaces defined using the mean oscillation over cubes”, Ann. Scuola norm. super. Pisa, 19:4 (1965), 593–608 | MR | Zbl
[4] Campanato C., “Proprieta di holderianita di alcune classi di funzioni”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 17:1–2 (1963), 175–188 | MR | Zbl
[5] Meyers N. J., “Mean oscillation over cubes and Hölder continuity”, Proc. Amer. Math. Soc., 15:5 (1964), 717–721 | MR | Zbl
[6] Long R., Yang L., “BMO functions in spaces of homogeneous type”, Sci. Sinica, Ser. A, 27:7 (1984), 695–708 | MR | Zbl
[7] Logunov A. A., Slavin L., Stolyarov D. M., Vasyunin V., Zatitskiy P. B., Weak integral conditions for BMO, 2013, arXiv: 1309.6780v1 | MR
[8] Aimar H., “Singular integrals and approximate identities on spaces of homogeneous type”, Trans. Amer. Math. Soc., 292 (1985), 135–153 | DOI | MR | Zbl
[9] Ivanishko I. A., Krotov V. G., “Obobschennoe neravenstvo Puankare–Soboleva na metricheskikh prostranstvakh”, Trudy Instituta matematiki NAN Belarusi, 14:1 (2006), 51–61
[10] Korenovskii A., Mean oscillations and equimeasurable rearrangements of functions, Springer-Verlag, Berlin–Heidelberg, 2007 | MR | Zbl
[11] Ivanishko I. A., Krotov V. G., Porabkovich A. I., “Obobschenie teoremy Kampanato–Meiersa”, Trudy Instituta matematiki NAN Belarusi, 20:2 (2012), 30–35
[12] Gorka P., “Campanato theorem on metric measure spaces”, Ann. Acad. Sci. Fenn., 34 (2009), 523–528 | MR | Zbl