On the Hartsfield--Ringel hypothesis: connected unigraphs
Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 46-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hartsfield–Ringel hypothesis about the antimagicness of connected graphs is investigated in the class of connected unigraphs. It is proven that all connected unigraphs with no less than three vertices are antimagic.
@article{TIMB_2014_22_2_a4,
     author = {V. N. Kalachev},
     title = {On the {Hartsfield--Ringel} hypothesis: connected unigraphs},
     journal = {Trudy Instituta matematiki},
     pages = {46--52},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a4/}
}
TY  - JOUR
AU  - V. N. Kalachev
TI  - On the Hartsfield--Ringel hypothesis: connected unigraphs
JO  - Trudy Instituta matematiki
PY  - 2014
SP  - 46
EP  - 52
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a4/
LA  - ru
ID  - TIMB_2014_22_2_a4
ER  - 
%0 Journal Article
%A V. N. Kalachev
%T On the Hartsfield--Ringel hypothesis: connected unigraphs
%J Trudy Instituta matematiki
%D 2014
%P 46-52
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a4/
%G ru
%F TIMB_2014_22_2_a4
V. N. Kalachev. On the Hartsfield--Ringel hypothesis: connected unigraphs. Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 46-52. http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a4/

[1] Hartsfield N., Ringel G., Pearls in Graph Theory, Academic Press, Inc., Boston, 1990 ; revised version, 1994 | MR | Zbl

[2] Tyshkevich R. I., “Decomposition of graphical sequences and unigraphs”, Discrete Mathematics, 220 (2000), 201–238 | DOI | MR | Zbl

[3] Barrus M. D., “Antimagic labeling and canonical decomposition of graphs”, Information Processing Letters Journal, 110 (2010), 261–263 | DOI | MR | Zbl

[4] Alon N., Kaplan G., Lev A., Roditty Y., Yuster R., “Dense graphs are antimagic”, J. of Graph Theory, 47 (2004), 297–309 | DOI | MR | Zbl