Newton diagrams and algebraic curves
Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 32-45

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the Newton diagram for polynomial in two variables allows us to give a full analysis of the behavior of the corresponding algebraic curve in the neighborhood of the infinity. This analysis reduces to the constraction of Euler tree for the polynomial under consideration. This construction the logic of the Euler classification of algebraic curves and is its natural generalization.
@article{TIMB_2014_22_2_a3,
     author = {P. P. Zabreiko and A. V. Krivko-Krasko},
     title = {Newton diagrams and algebraic curves},
     journal = {Trudy Instituta matematiki},
     pages = {32--45},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a3/}
}
TY  - JOUR
AU  - P. P. Zabreiko
AU  - A. V. Krivko-Krasko
TI  - Newton diagrams and algebraic curves
JO  - Trudy Instituta matematiki
PY  - 2014
SP  - 32
EP  - 45
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a3/
LA  - ru
ID  - TIMB_2014_22_2_a3
ER  - 
%0 Journal Article
%A P. P. Zabreiko
%A A. V. Krivko-Krasko
%T Newton diagrams and algebraic curves
%J Trudy Instituta matematiki
%D 2014
%P 32-45
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a3/
%G ru
%F TIMB_2014_22_2_a3
P. P. Zabreiko; A. V. Krivko-Krasko. Newton diagrams and algebraic curves. Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 32-45. http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a3/