Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2014_22_2_a2, author = {A. G. Husakova and V. I. Bernik}, title = {The quantity of algebraic numbers with small derivative of the minimal polynomial in a short intervals}, journal = {Trudy Instituta matematiki}, pages = {18--31}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a2/} }
TY - JOUR AU - A. G. Husakova AU - V. I. Bernik TI - The quantity of algebraic numbers with small derivative of the minimal polynomial in a short intervals JO - Trudy Instituta matematiki PY - 2014 SP - 18 EP - 31 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a2/ LA - ru ID - TIMB_2014_22_2_a2 ER -
%0 Journal Article %A A. G. Husakova %A V. I. Bernik %T The quantity of algebraic numbers with small derivative of the minimal polynomial in a short intervals %J Trudy Instituta matematiki %D 2014 %P 18-31 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a2/ %G ru %F TIMB_2014_22_2_a2
A. G. Husakova; V. I. Bernik. The quantity of algebraic numbers with small derivative of the minimal polynomial in a short intervals. Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 18-31. http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a2/
[1] Dirichlet L. G. P., Verallgemeinerung eines Satzes aus der Lehre von den Kettenbruchen nebst einigen Anwendungen auf die Theorie der Zahlen, S.-B. Preus. Akad. Wiss., 1842, 93–95
[2] Khinchin A., Continued Fractions, University of Chicago Press, 1964 | MR | Zbl
[3] Mahler K., “Zur Approximation der Exponentialfunktion und des Logarithmus, I”, J. Reine Angew. Math., 166 (1932), 118–150 | MR
[4] Sprindzhuk V. G., Problema Malera v metricheskoi teorii chisel, Nauka i tekhnika, Minsk, 1967
[5] Baker A., “On a theorem of Sprindzuk”, Proc. Roy. Soc. London. Ser. A, 292 (1966), 92–104 | DOI | Zbl
[6] Bernik V. I., “O tochnom poryadke priblizheniya nulya znacheniyami tselochislennykh mnogochlenov”, Acta Arith., 53:1 (1989), 17–28 | MR | Zbl
[7] Beresnevich V., “On approximation of real numbers by real algebraic numbers”, Acta Arith., 90:2 (1999), 97–112 | MR | Zbl
[8] Schmidt W., “T-numbers do exist”, Symposia Mathematica, IV (INDAM, Rome, 1968/1969), 1970, 3–26 | MR | Zbl
[9] Budarina N. V., Bernik V. I., O'Donnell Kh., “Deistvitelnye algebraicheskie chisla tretei stepeni v korotkikh intervalakh”, Dokl. NAN Belarusi, 57:4 (2012), 23–26
[10] Bugeaud Y., “Mahler's classification of numbers compared with Kosma's”, Acta Arith., 110:1 (2003), 89–105 | DOI | MR | Zbl
[11] Bernik V. I., “Primenenie razmernosti Khausdorfa v teorii diofantovykh priblizhenii”, Acta Arith., 42:3 (1983), 219–253 | MR | Zbl