The quantity of algebraic numbers with small derivative of the minimal polynomial in a short intervals
Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 18-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

The real algebraic numbers $\alpha$, for which the module of minimal polynomial takes a small values are important for the problem of difference of Mahler’s and Koksma’s classification of real numbers. In this article we find the conditions for which the intervals of small length contain or don’t contain numbers $\alpha$.
@article{TIMB_2014_22_2_a2,
     author = {A. G. Husakova and V. I. Bernik},
     title = {The quantity of algebraic numbers with small derivative of the minimal polynomial in a short intervals},
     journal = {Trudy Instituta matematiki},
     pages = {18--31},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a2/}
}
TY  - JOUR
AU  - A. G. Husakova
AU  - V. I. Bernik
TI  - The quantity of algebraic numbers with small derivative of the minimal polynomial in a short intervals
JO  - Trudy Instituta matematiki
PY  - 2014
SP  - 18
EP  - 31
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a2/
LA  - ru
ID  - TIMB_2014_22_2_a2
ER  - 
%0 Journal Article
%A A. G. Husakova
%A V. I. Bernik
%T The quantity of algebraic numbers with small derivative of the minimal polynomial in a short intervals
%J Trudy Instituta matematiki
%D 2014
%P 18-31
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a2/
%G ru
%F TIMB_2014_22_2_a2
A. G. Husakova; V. I. Bernik. The quantity of algebraic numbers with small derivative of the minimal polynomial in a short intervals. Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 18-31. http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a2/

[1] Dirichlet L. G. P., Verallgemeinerung eines Satzes aus der Lehre von den Kettenbruchen nebst einigen Anwendungen auf die Theorie der Zahlen, S.-B. Preus. Akad. Wiss., 1842, 93–95

[2] Khinchin A., Continued Fractions, University of Chicago Press, 1964 | MR | Zbl

[3] Mahler K., “Zur Approximation der Exponentialfunktion und des Logarithmus, I”, J. Reine Angew. Math., 166 (1932), 118–150 | MR

[4] Sprindzhuk V. G., Problema Malera v metricheskoi teorii chisel, Nauka i tekhnika, Minsk, 1967

[5] Baker A., “On a theorem of Sprindzuk”, Proc. Roy. Soc. London. Ser. A, 292 (1966), 92–104 | DOI | Zbl

[6] Bernik V. I., “O tochnom poryadke priblizheniya nulya znacheniyami tselochislennykh mnogochlenov”, Acta Arith., 53:1 (1989), 17–28 | MR | Zbl

[7] Beresnevich V., “On approximation of real numbers by real algebraic numbers”, Acta Arith., 90:2 (1999), 97–112 | MR | Zbl

[8] Schmidt W., “T-numbers do exist”, Symposia Mathematica, IV (INDAM, Rome, 1968/1969), 1970, 3–26 | MR | Zbl

[9] Budarina N. V., Bernik V. I., O'Donnell Kh., “Deistvitelnye algebraicheskie chisla tretei stepeni v korotkikh intervalakh”, Dokl. NAN Belarusi, 57:4 (2012), 23–26

[10] Bugeaud Y., “Mahler's classification of numbers compared with Kosma's”, Acta Arith., 110:1 (2003), 89–105 | DOI | MR | Zbl

[11] Bernik V. I., “Primenenie razmernosti Khausdorfa v teorii diofantovykh priblizhenii”, Acta Arith., 42:3 (1983), 219–253 | MR | Zbl