Inductive systems of representations with small highest weights for natural embeddings of symplectic groups
Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 109-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For natural embeddings of symplectic groups, inductive systems of irreducible representations where the maximum of the highest weight value on the maximal root is equal to $2$ are studied. For such embeddings of algebraic groups of type $C_n$ in characteristic $3$, the inductive system of representations generated by irreducible representations with highest weight $2\omega_n$ is determined. It is proved that any inductive system of representations of such groups consisting of representations with the value of the highest weight on the maximal root at most $2$ and containing representations with such value equal to $2$ contains the subsystem generated by the standard representations or the subsystem generated by the representations with highest weight $\omega_n$, For algebraic groups of type $C_n$ in characteristic $3$, the restrictions of certain irreducible modules to subsystem subgroups of type $C_{n-1}$ are described.
@article{TIMB_2014_22_2_a10,
     author = {A. A. Osinovskaya and I. D. Suprunenko},
     title = {Inductive systems of representations with small highest weights for~natural embeddings of symplectic groups},
     journal = {Trudy Instituta matematiki},
     pages = {109--118},
     year = {2014},
     volume = {22},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a10/}
}
TY  - JOUR
AU  - A. A. Osinovskaya
AU  - I. D. Suprunenko
TI  - Inductive systems of representations with small highest weights for natural embeddings of symplectic groups
JO  - Trudy Instituta matematiki
PY  - 2014
SP  - 109
EP  - 118
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a10/
LA  - en
ID  - TIMB_2014_22_2_a10
ER  - 
%0 Journal Article
%A A. A. Osinovskaya
%A I. D. Suprunenko
%T Inductive systems of representations with small highest weights for natural embeddings of symplectic groups
%J Trudy Instituta matematiki
%D 2014
%P 109-118
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a10/
%G en
%F TIMB_2014_22_2_a10
A. A. Osinovskaya; I. D. Suprunenko. Inductive systems of representations with small highest weights for natural embeddings of symplectic groups. Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 109-118. http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a10/

[1] Baranov A. A., Osinovskaya A. A., Suprunenko I. D., “Modular representations of the special linear groups with small weight multiplicities”, J. Algebra, 397 (2014), 225–251 | DOI | MR | Zbl

[2] Baranov A. A., Suprunenko I. D., “Minimal inductive systems of modular representations for naturally embedded algebraic groups of type A”, Communications in Algebra, 29 (2001), 3117–3134 | DOI | MR

[3] Baranov A. A., Suprunenko I. D., “Branching rules for modular fundamental representations of symplectic groups”, Bull. London Math. Soc., 32 (2000), 409–420 | DOI | MR | Zbl

[4] Borel A., “Properties and linear representations of Chevalley groups”, Seminar on algebraic groups and related finite groups, Lecture Notes in Mathematics, 131, eds. A. Borel et al., 1970, 1–55 | DOI | MR

[5] Bourbaki N., Groupes et algèbres de Lie, Chaps. VII–VIII, Hermann, 1975 | Zbl

[6] Goodman R., Wallach N. R., Symmetry, representations, and invariants, Graduate texts in mathematics, 255, Springer, Dordrecht, 2009 | DOI | MR | Zbl

[7] Jantzen J. C., “Darstellungen halbeinfacher algebraicher Gruppen und zugeordnetekontravariante Formen”, Bonner math. Schr., 67 (1973), 117–141 | MR

[8] Seitz G. M., The maximal subgroups of classical algebraic groups, Memoirs of the AMS, 365, 1987, 286 pp. | MR | Zbl

[9] Smith S., “Irreducible modules and parabolic subgroups”, J. Algebra, 75 (1982), 286–289 | DOI | MR | Zbl

[10] Suprunenko I. D., “On Jordan blocks of elements of order $p$ in irreducible representations of classical groups with $p$-large highest weights”, J. Algebra, 191 (1997), 589–627 | DOI | MR | Zbl

[11] Suprunenko I. D., The minimal polynomials of unipotent elements in irreducible representations of the classical groups in odd characteristic, Memoirs of the AMS, 200, no. 939, 2009 | DOI | MR

[12] Zalesskii A. E., “Group rings of simple locally finite groups”, Finite and locally finite groups, NATO ASI Series C, 471, 1995, 219–246 | MR

[13] Zalesskii A. E., Suprunenko I. D., “Representations of dimensions $(p^n\pm1)/2$ of a symplectic group of degree $2n$ over a finite field”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, 1987, no. 6, 9–15 (in Russian) | MR

[14] Zalesskii A. E., Suprunenko I. D., “Truncated symmetric powers of the natural realizations of the groups $SL_m(P)$ and $Sp_m(P)$ and their restrictions to subgroups”, Siber. Math. J., 31:4 (1990), 555–566 | DOI | MR