Inductive systems of representations with small highest weights for~natural embeddings of symplectic groups
Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 109-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

For natural embeddings of symplectic groups, inductive systems of irreducible representations where the maximum of the highest weight value on the maximal root is equal to $2$ are studied. For such embeddings of algebraic groups of type $C_n$ in characteristic $3$, the inductive system of representations generated by irreducible representations with highest weight $2\omega_n$ is determined. It is proved that any inductive system of representations of such groups consisting of representations with the value of the highest weight on the maximal root at most $2$ and containing representations with such value equal to $2$ contains the subsystem generated by the standard representations or the subsystem generated by the representations with highest weight $\omega_n$, For algebraic groups of type $C_n$ in characteristic $3$, the restrictions of certain irreducible modules to subsystem subgroups of type $C_{n-1}$ are described.
@article{TIMB_2014_22_2_a10,
     author = {A. A. Osinovskaya and I. D. Suprunenko},
     title = {Inductive systems of representations with small highest weights for~natural embeddings of symplectic groups},
     journal = {Trudy Instituta matematiki},
     pages = {109--118},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a10/}
}
TY  - JOUR
AU  - A. A. Osinovskaya
AU  - I. D. Suprunenko
TI  - Inductive systems of representations with small highest weights for~natural embeddings of symplectic groups
JO  - Trudy Instituta matematiki
PY  - 2014
SP  - 109
EP  - 118
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a10/
LA  - en
ID  - TIMB_2014_22_2_a10
ER  - 
%0 Journal Article
%A A. A. Osinovskaya
%A I. D. Suprunenko
%T Inductive systems of representations with small highest weights for~natural embeddings of symplectic groups
%J Trudy Instituta matematiki
%D 2014
%P 109-118
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a10/
%G en
%F TIMB_2014_22_2_a10
A. A. Osinovskaya; I. D. Suprunenko. Inductive systems of representations with small highest weights for~natural embeddings of symplectic groups. Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 109-118. http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a10/

[1] Baranov A. A., Osinovskaya A. A., Suprunenko I. D., “Modular representations of the special linear groups with small weight multiplicities”, J. Algebra, 397 (2014), 225–251 | DOI | MR | Zbl

[2] Baranov A. A., Suprunenko I. D., “Minimal inductive systems of modular representations for naturally embedded algebraic groups of type A”, Communications in Algebra, 29 (2001), 3117–3134 | DOI | MR

[3] Baranov A. A., Suprunenko I. D., “Branching rules for modular fundamental representations of symplectic groups”, Bull. London Math. Soc., 32 (2000), 409–420 | DOI | MR | Zbl

[4] Borel A., “Properties and linear representations of Chevalley groups”, Seminar on algebraic groups and related finite groups, Lecture Notes in Mathematics, 131, eds. A. Borel et al., 1970, 1–55 | DOI | MR

[5] Bourbaki N., Groupes et algèbres de Lie, Chaps. VII–VIII, Hermann, 1975 | Zbl

[6] Goodman R., Wallach N. R., Symmetry, representations, and invariants, Graduate texts in mathematics, 255, Springer, Dordrecht, 2009 | DOI | MR | Zbl

[7] Jantzen J. C., “Darstellungen halbeinfacher algebraicher Gruppen und zugeordnetekontravariante Formen”, Bonner math. Schr., 67 (1973), 117–141 | MR

[8] Seitz G. M., The maximal subgroups of classical algebraic groups, Memoirs of the AMS, 365, 1987, 286 pp. | MR | Zbl

[9] Smith S., “Irreducible modules and parabolic subgroups”, J. Algebra, 75 (1982), 286–289 | DOI | MR | Zbl

[10] Suprunenko I. D., “On Jordan blocks of elements of order $p$ in irreducible representations of classical groups with $p$-large highest weights”, J. Algebra, 191 (1997), 589–627 | DOI | MR | Zbl

[11] Suprunenko I. D., The minimal polynomials of unipotent elements in irreducible representations of the classical groups in odd characteristic, Memoirs of the AMS, 200, no. 939, 2009 | DOI | MR

[12] Zalesskii A. E., “Group rings of simple locally finite groups”, Finite and locally finite groups, NATO ASI Series C, 471, 1995, 219–246 | MR

[13] Zalesskii A. E., Suprunenko I. D., “Representations of dimensions $(p^n\pm1)/2$ of a symplectic group of degree $2n$ over a finite field”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, 1987, no. 6, 9–15 (in Russian) | MR

[14] Zalesskii A. E., Suprunenko I. D., “Truncated symmetric powers of the natural realizations of the groups $SL_m(P)$ and $Sp_m(P)$ and their restrictions to subgroups”, Siber. Math. J., 31:4 (1990), 555–566 | DOI | MR