Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2014_22_2_a10, author = {A. A. Osinovskaya and I. D. Suprunenko}, title = {Inductive systems of representations with small highest weights for~natural embeddings of symplectic groups}, journal = {Trudy Instituta matematiki}, pages = {109--118}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a10/} }
TY - JOUR AU - A. A. Osinovskaya AU - I. D. Suprunenko TI - Inductive systems of representations with small highest weights for~natural embeddings of symplectic groups JO - Trudy Instituta matematiki PY - 2014 SP - 109 EP - 118 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a10/ LA - en ID - TIMB_2014_22_2_a10 ER -
%0 Journal Article %A A. A. Osinovskaya %A I. D. Suprunenko %T Inductive systems of representations with small highest weights for~natural embeddings of symplectic groups %J Trudy Instituta matematiki %D 2014 %P 109-118 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a10/ %G en %F TIMB_2014_22_2_a10
A. A. Osinovskaya; I. D. Suprunenko. Inductive systems of representations with small highest weights for~natural embeddings of symplectic groups. Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 109-118. http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a10/
[1] Baranov A. A., Osinovskaya A. A., Suprunenko I. D., “Modular representations of the special linear groups with small weight multiplicities”, J. Algebra, 397 (2014), 225–251 | DOI | MR | Zbl
[2] Baranov A. A., Suprunenko I. D., “Minimal inductive systems of modular representations for naturally embedded algebraic groups of type A”, Communications in Algebra, 29 (2001), 3117–3134 | DOI | MR
[3] Baranov A. A., Suprunenko I. D., “Branching rules for modular fundamental representations of symplectic groups”, Bull. London Math. Soc., 32 (2000), 409–420 | DOI | MR | Zbl
[4] Borel A., “Properties and linear representations of Chevalley groups”, Seminar on algebraic groups and related finite groups, Lecture Notes in Mathematics, 131, eds. A. Borel et al., 1970, 1–55 | DOI | MR
[5] Bourbaki N., Groupes et algèbres de Lie, Chaps. VII–VIII, Hermann, 1975 | Zbl
[6] Goodman R., Wallach N. R., Symmetry, representations, and invariants, Graduate texts in mathematics, 255, Springer, Dordrecht, 2009 | DOI | MR | Zbl
[7] Jantzen J. C., “Darstellungen halbeinfacher algebraicher Gruppen und zugeordnetekontravariante Formen”, Bonner math. Schr., 67 (1973), 117–141 | MR
[8] Seitz G. M., The maximal subgroups of classical algebraic groups, Memoirs of the AMS, 365, 1987, 286 pp. | MR | Zbl
[9] Smith S., “Irreducible modules and parabolic subgroups”, J. Algebra, 75 (1982), 286–289 | DOI | MR | Zbl
[10] Suprunenko I. D., “On Jordan blocks of elements of order $p$ in irreducible representations of classical groups with $p$-large highest weights”, J. Algebra, 191 (1997), 589–627 | DOI | MR | Zbl
[11] Suprunenko I. D., The minimal polynomials of unipotent elements in irreducible representations of the classical groups in odd characteristic, Memoirs of the AMS, 200, no. 939, 2009 | DOI | MR
[12] Zalesskii A. E., “Group rings of simple locally finite groups”, Finite and locally finite groups, NATO ASI Series C, 471, 1995, 219–246 | MR
[13] Zalesskii A. E., Suprunenko I. D., “Representations of dimensions $(p^n\pm1)/2$ of a symplectic group of degree $2n$ over a finite field”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, 1987, no. 6, 9–15 (in Russian) | MR
[14] Zalesskii A. E., Suprunenko I. D., “Truncated symmetric powers of the natural realizations of the groups $SL_m(P)$ and $Sp_m(P)$ and their restrictions to subgroups”, Siber. Math. J., 31:4 (1990), 555–566 | DOI | MR