On the relation between a factorization of a polynomial resultant and the frequency of it’s occurence
Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 9-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

A lower bound is obtained for the number of polynomial pairs of a given degree and bounded heights such that their resultants are divisible by a fixed prime power.
@article{TIMB_2014_22_2_a1,
     author = {N. V. Budarina and V. I. Bernik and H. O'Donnell},
     title = {On the relation between a factorization of a polynomial resultant and the frequency of it{\textquoteright}s occurence},
     journal = {Trudy Instituta matematiki},
     pages = {9--17},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a1/}
}
TY  - JOUR
AU  - N. V. Budarina
AU  - V. I. Bernik
AU  - H. O'Donnell
TI  - On the relation between a factorization of a polynomial resultant and the frequency of it’s occurence
JO  - Trudy Instituta matematiki
PY  - 2014
SP  - 9
EP  - 17
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a1/
LA  - ru
ID  - TIMB_2014_22_2_a1
ER  - 
%0 Journal Article
%A N. V. Budarina
%A V. I. Bernik
%A H. O'Donnell
%T On the relation between a factorization of a polynomial resultant and the frequency of it’s occurence
%J Trudy Instituta matematiki
%D 2014
%P 9-17
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a1/
%G ru
%F TIMB_2014_22_2_a1
N. V. Budarina; V. I. Bernik; H. O'Donnell. On the relation between a factorization of a polynomial resultant and the frequency of it’s occurence. Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 9-17. http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a1/

[1] Van der Varden B. L., Algebra, Nauka, M., 1976

[2] Sprindzhuk V. G., Problema Malera v metricheskoi teorii chisel, Nauka i tekhnika, Minsk, 1967

[3] Budarina N., Dickinson D., Bernik V., “Simultaneous Diophantine approximation in the real, complex and $p$-adic fields”, Math. Proc. Cambridge Philos. Soc., 149:2 (2010), 193–216 | DOI | MR | Zbl

[4] Bernik V. I., “Primenenie razmernosti Khausdorfa v teorii diofantovykh priblizhenii”, Acta Arith., 42:3 (1983), 219–253 | MR | Zbl

[5] Bernik V. I., “Sovmestnye priblizheniya nulya znacheniyami tselochislennykh mnogochlenov”, Izv. AN SSSR. Ser. fiz.-mat., 44:1 (1980), 24–45 | MR

[6] Beresnevich V. V., Bernik V. I., Kovalevskaya E. I., “On approximation of $p$-adic numbers by $p$-adic algebraic numbers”, J. Number Theory, 111:1 (2005), 33–56 | DOI | MR | Zbl

[7] Khintchine A. J., “Einige Satze uber Kettenbruche, mit Anwendungen auf die Theorie der Diophantischen Approximationen”, Math. Ann., 92 (1924), 115–125 | DOI | MR | Zbl

[8] Beresnevich V. V., Bernik V. I., Gettse F., “O raspredelenii znachenii rezultantov tselochislennykh polinomov”, Dokl. NAN Belarusi, 54:2 (2010), 21–23 | MR

[9] Beresnevich V., “Rational points near manifolds and metric Diophantine approximation”, Ann. of Math., 175:2 (2012), 187–235 | DOI | MR | Zbl