Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2014_22_1_a8, author = {V. B. Malyutin}, title = {Evaluation of expectation of a functionals depending on the solution of~linear stochastic equations}, journal = {Trudy Instituta matematiki}, pages = {107--114}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a8/} }
TY - JOUR AU - V. B. Malyutin TI - Evaluation of expectation of a functionals depending on the solution of~linear stochastic equations JO - Trudy Instituta matematiki PY - 2014 SP - 107 EP - 114 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a8/ LA - ru ID - TIMB_2014_22_1_a8 ER -
V. B. Malyutin. Evaluation of expectation of a functionals depending on the solution of~linear stochastic equations. Trudy Instituta matematiki, Tome 22 (2014) no. 1, pp. 107-114. http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a8/
[1] Kloeden P. E., Platen E., Numerical solution of stochastic differential equations, Springer-Verlag, 1992
[2] Kuznetsov D. F., Chislennoe integrirovanie stokhasticheskikh differentsialnykh uravnenii, SPb., 2001
[3] Arato M., Linear stochastic systems with constant coefficients. A Statistical approach, Springer-Verlag, 1982
[4] Pugachev V. S., Sinitsyn I. N., Stochastic differential systems: Analisis and filtering, Wiley, New York, 1987
[5] Risken H., The Fokker–Planck equation. Methods of solution and applications, Springer-Verlag, 1984
[6] Egorov A. D., Zhidkov E. P., Lobanov Yu. Yu., Vvedenie v teoriyu i prilozheniya funktsionalnogo integrirovaniya, Fizmatlit, M., 2006
[7] Egorov A. D., Sabelfeld K., “Approximate formulas for expectations of functionals of solutions to stochastic differential equations”, Monte Carlo Methods and Applications, 18 (2009), 95–127
[8] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968
[9] Wilkinson J. H., The algebraic eigenvalue problem, Oxford, 1965
[10] Paladin G., Serva M., “Analytic solution of the random Ising model in one dimension”, Physical Review Letters, 69:5 (1992) | DOI
[11] Malyutin V. B., “Ob odnom metode vychisleniya funktsionalnykh integralov po spinovym peremennym”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2012, no. 3, 18–25