New implementation of the FD-method for Sturm--Liouville problems with Dirichlet--Neumann boundary conditions
Trudy Instituta matematiki, Tome 22 (2014) no. 1, pp. 98-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new algorithm of the FD-method is proposed for solving Sturm–Liouville problems on an interval with Dirichlet–Neumann boundary conditions where the potential is a polynomial. A software implementation of the algorithm using a computer algebra software package shows its high efficiency.
@article{TIMB_2014_22_1_a7,
     author = {V. L. Makarov and N. N. Romaniuk},
     title = {New implementation of the {FD-method} for {Sturm--Liouville} problems with {Dirichlet--Neumann} boundary conditions},
     journal = {Trudy Instituta matematiki},
     pages = {98--106},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a7/}
}
TY  - JOUR
AU  - V. L. Makarov
AU  - N. N. Romaniuk
TI  - New implementation of the FD-method for Sturm--Liouville problems with Dirichlet--Neumann boundary conditions
JO  - Trudy Instituta matematiki
PY  - 2014
SP  - 98
EP  - 106
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a7/
LA  - ru
ID  - TIMB_2014_22_1_a7
ER  - 
%0 Journal Article
%A V. L. Makarov
%A N. N. Romaniuk
%T New implementation of the FD-method for Sturm--Liouville problems with Dirichlet--Neumann boundary conditions
%J Trudy Instituta matematiki
%D 2014
%P 98-106
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a7/
%G ru
%F TIMB_2014_22_1_a7
V. L. Makarov; N. N. Romaniuk. New implementation of the FD-method for Sturm--Liouville problems with Dirichlet--Neumann boundary conditions. Trudy Instituta matematiki, Tome 22 (2014) no. 1, pp. 98-106. http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a7/

[1] Makarov V. L., “O funktsionalno-raznostnom metode proizvolnogo poryadka tochnosti resheniya zadachi Shturma–Liuvilya s kusochno-gladkimi koeffitsientami”, Dokl. AN SSSR, 320:1 (1991), 34–39

[2] Makarov V. L., “FD-metod — eksponentsialnaya skorost skhodimosti”, Obchislyuvalna ta prikladna matematika, 1997, no. 82, 69–74

[3] Bandirskii B. I., Makarov V. L., Ukhanov O. L., “FD-metod dlya zadach Shturma–Liuvillya. Eksponentsiina shvidkist zbizhnosti”, Zhurn. obchisl. prikl. matematiki, 85:1 (2000), 1–60

[4] Makarov V. L., Romanyuk N. M., “Novi vlastivosti FD-metodu pri iogo zastosuvannyakh do zadach Shturma–Liuvillya”, Dopovidi NAN Ukraïni, 2014, no. 2, 26–31

[5] Makarov V. L., Vinokur V. V., “The FD method for first-order linear hyperbolic differential equations with piecewise smooth coefficients”, J. of Mathematical Sciences, 77:5 (1995), 3399–3405 | DOI

[6] Adomian G., Solving frontier problems of physics: The Decomposition method, Kluwer Academic Publishers, Dordrecht–Boston, 1994

[7] Marchenko V. A., Operatory Shturma–Liuvilya i ikh prilozheniya, Naukova dumka, Kiev, 1977