On composed approximate formulas for expectations of functionals of~random processes
Trudy Instituta matematiki, Tome 22 (2014) no. 1, pp. 70-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

The composed approximate formulas for evaluation of expectation of functional of random processes are build. The formulas are based on using of the Wiener chaos expansion and exact for functional polynomials. An asymptotic of the error of the formulas for a class of functionals is obtained.
@article{TIMB_2014_22_1_a5,
     author = {A. D. Egorov},
     title = {On composed approximate formulas for expectations of functionals of~random processes},
     journal = {Trudy Instituta matematiki},
     pages = {70--77},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a5/}
}
TY  - JOUR
AU  - A. D. Egorov
TI  - On composed approximate formulas for expectations of functionals of~random processes
JO  - Trudy Instituta matematiki
PY  - 2014
SP  - 70
EP  - 77
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a5/
LA  - ru
ID  - TIMB_2014_22_1_a5
ER  - 
%0 Journal Article
%A A. D. Egorov
%T On composed approximate formulas for expectations of functionals of~random processes
%J Trudy Instituta matematiki
%D 2014
%P 70-77
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a5/
%G ru
%F TIMB_2014_22_1_a5
A. D. Egorov. On composed approximate formulas for expectations of functionals of~random processes. Trudy Instituta matematiki, Tome 22 (2014) no. 1, pp. 70-77. http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a5/

[1] Cameron R. H., ““Simpson's rule” for the numerical evaluation of Wiener's integrals in function space”, Duke Math. J., 18:1 (1951), 111–130 | DOI

[2] Yanovich L. A., Priblizhennoe vychislenie kontinualnykh integralov po gaussovym meram, Nauka i tekhnika, Minsk, 1976

[3] Egorov A. D., Sobolevskii P. I., Yanovich L. A., Priblizhennye metody vychisleniya kontinualnykh integralov, Nauka i tekhnika, Minsk, 1985

[4] Egorov A. D., Sobolevsky P. I., Yanovich L. A., Functional Integrals: Approximate Evaluation and Applications, Kluwer Academic Publishers, 1993

[5] Petrov V. A., “Sostavnye priblizhennye formuly dlya integralov ot funktsionalov spetsialnogo vida”, Dokl. AN BSSR, 30:2 (1986), 116–119

[6] Egorov A. D., Zhidkov E. P., Lobanov Yu. Yu., Vvedenie v teoriyu i prilozheniya funktsionalnogo integrirovaniya, Fizmatlit, M., 2006

[7] Likhoded N. A., “Utochnenie monte-karlovskoi otsenki kontinualnykh integralov”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, 1990, no. 2, 8–13

[8] Egorov A. D., Zherelo A. V., “Approximations of functional integrals with respect to measure generated by solutions of stochastic differential equations”, Monte Carlo methods and applications, 10:3–4 (2004), 257–264

[9] Egorov A. D., Sabelfeld K., “Approximate formulas for expectations of functionals of solutions to stochastic differential equations”, Monte Carlo Methods and Applications, 18 (2009), 95–127

[10] Cameron R. H., Martin W. T., “The orthogonal development of non linear functionals in series of Fourier–Hermite functionals”, Ann. Math., 48 (1947), 385–392 | DOI

[11] Xiu D., Karniadakis G. E., “The Wiener–Askey polynomial chaos for stochastic differential equations”, SIAM J. Sci. Comput., 24:2 (2002), 619–644 | DOI

[12] Luo W., Wiener chaos expansion and numerical solutions of stochastic partial differential equations, Ph. D. Thesis, California Institute of Technology, 2006

[13] Lototsky S. V., Rozovskii B. L., “Wiener chaos solutions of linear stochastic equations”, Annals of Probability, 34:2 (2006), 638–662 | DOI

[14] Ma J., Protter Ph., San Martin J., “Anticipating integrals for a class of martingales”, Bernoulli, 4:1 (1998), 81–114 | DOI

[15] Kuznetsov D. F., Chislennoe integrirovanie stokhasticheskikh differentsialnykh uravnenii, SPb. gos. un-t, SPb., 2001; Физматлит, 2006