First and second necessary optimality conditions for a discrete optimal control problem with nontransitive performance index
Trudy Instituta matematiki, Tome 22 (2014) no. 1, pp. 35-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a nonlinear discrete optimal control problem with a vector-valued performance index of terminal type. The main difference between the problem studied here and similar problems considered in other works is that the preference relation used here for comparison of admissible controls is not assumed to be in general transitive. We assume that a preference relation is only an asymmetric binary relation compatible with algebraic operations defined on a space of vector estimations. It is shown that under such assumptions the optimal control problem in question can be reduced to the problem of minimizing a scalar function, that is constructed as a composition of a difference sublinear function representing the preference relation and the vector performance index of the initial problem, over the set of admissible trajectories of the discrete system. The vector performance index is assumed to be twice parabolic differentiable and, hence, it is nonsmooth whereas the discrete system satisfy traditionally assumptions of smoothness. Under such assumptions we analyze the reduced scalar optimal control problem with variational tools and derive in such a way first and second necessary optimality conditions for admissible controls of the initial problem which extend such classical optimality conditions as the Euler condition and the nonnegativity of second variation are proved.
@article{TIMB_2014_22_1_a3,
     author = {V. V. Gorokhovik},
     title = {First and second necessary optimality conditions for a discrete optimal control problem with nontransitive performance index},
     journal = {Trudy Instituta matematiki},
     pages = {35--50},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a3/}
}
TY  - JOUR
AU  - V. V. Gorokhovik
TI  - First and second necessary optimality conditions for a discrete optimal control problem with nontransitive performance index
JO  - Trudy Instituta matematiki
PY  - 2014
SP  - 35
EP  - 50
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a3/
LA  - ru
ID  - TIMB_2014_22_1_a3
ER  - 
%0 Journal Article
%A V. V. Gorokhovik
%T First and second necessary optimality conditions for a discrete optimal control problem with nontransitive performance index
%J Trudy Instituta matematiki
%D 2014
%P 35-50
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a3/
%G ru
%F TIMB_2014_22_1_a3
V. V. Gorokhovik. First and second necessary optimality conditions for a discrete optimal control problem with nontransitive performance index. Trudy Instituta matematiki, Tome 22 (2014) no. 1, pp. 35-50. http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a3/

[1] Gorokhovik V. V., Simonov A. Yu., “Usloviya optimalnosti v zadache terminalnogo upravleniya vykhodom diskretnoi sistemy po otnosheniyu predpochteniya”, Vestsi AN Belarusi. Cer. fiz.-mat. navuk, 1998, no. 4, 41–46

[2] Gorokhovik V. V., Gorokhovik S. Ya., Marinkovich B., “Neobkhodimye usloviya optimalnosti v gladkoi zadache upravleniya diskretnoi sistemoi s vektornym pokazatelem kachestva”, Tr. In-ta matematiki, 17:1 (2009), 27–40

[3] Gorokhovik V. V., Gorokhovik S. Ya., Marinkovic B., “First and second order necessary optimality conditions for a discrete-time optimal control problem with a vector-valued objective function”, Positivity, 17:3 (2013), 483–500 | DOI

[4] Levin M. I., Makarov V. L., Rubinov A. M., Matematicheskie modeli ekonomicheskikh mekhanizmov, Nauka, M., 1993

[5] Akilov G. P., Kutateladze S. S., Uporyadochennye vektornye prostranstva, Nauka, SO, Novosibirsk, 1978

[6] Gorokhovik V. V., Vypuklye i negladkie zadachi vektornoi optimizatsii, Nauka i tekhnika, Minsk, 1990; 2-ое изд., УРСС, М., 2012

[7] Demyanov V. F., “O kvazidifferentsiruemykh funktsionalakh”, Dokl. AN SSSR, 250:1 (1980), 21–25

[8] Gorokhovik V. V., “$\varepsilon$-Quasidufferentiability of real-valued functions and optimality conditions in extremal problems”, Mathematical Programming Study, 29 (1986), 203–218 | DOI

[9] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990

[10] Shapiro A., “Quasidufferential calculus and first-order optimality conditions in nonsmooth optimization”, Mathematical Programming Study, 29 (1986), 56–68 | DOI

[11] Gorokhovik V. V., Rachkovskii N. N., Usloviya pervogo i vtorogo poryadka lokalnoi sobstvennoi minimalnosti v zadachakh vektornoi optimizatsii, Preprint No 50(450), In-t matematiki AN BSSR, Minsk, 1990

[12] Gorokhovik V. V., “Kasatelnye vektory vtorogo poryadka k mnozhestvam i usloviya minimalnosti dlya tochek podmnozhestv uporyadochennykh normirovannykh prostranstv”, Tr. In-ta matematiki, 14:2 (2006), 35–47

[13] Bakhtin V. I., Gorokhovik V. V., “Usloviya optimalnosti pervogo i vtorogo poryadkov v zadachakh vektornoi optimizatsii na metricheskikh prostranstvakh”, Tr. In-ta matematiki i mekhaniki Uralskogo otdeleniya RAN, 15, no. 4, 2009, 32–43

[14] Gorokhovik V. V., “Usloviya minimalnosti v zadachakh vektornoi optimizatsii s netelesnym konusom polozhitelnykh elementov”, Zhurn. vychislit. matematiki i mat. fiziki, 52:7 (2012), 1192–1214

[15] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979

[16] Vasilev F. P., Metody optimizatsii, Faktorial, M., 2002

[17] Gorokhovik V. V., Konechnomernye zadachi optimizatsii, Izd. tsentr BGU, Minsk, 2007

[18] Mordukhovich B. S., Variational Analysis and Generalized Differentiation, v. I, Basic Theory; v. II, Applications, Springer, Berlin et al., 2005

[19] Rockafellar R. T., Wets R. J.-B., Variational analysis, Springer-Verlag, Berlin, 1998

[20] Bonnans J. F., Shapiro A., Perturbation Analysis of Optimization Problems, Springer, Berlin, 2000

[21] Gaishun I. V., Sistemy s diskretnym vremenem, Institut matematiki NAN Belarusi, Minsk, 2001

[22] Ben-Tal A., “Second order and related extremality conditions in nonlinear programming”, J. Optim. Theory and Appl., 31 (1980), 143–165 | DOI

[23] Ben-Tal A., Zowe J., “A unified theory of first and second order conditions for extremum problems in topological vector spaces”, Math. Programming Study, 19 (1982), 39–76 | DOI

[24] Demyanov V. F., Priblizhennye metody resheniya ekstremalnykh zadach, Izd-vo Izd-vo Leningrad. un-ta, L., 1968

[25] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969

[26] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhauser, Boston, 1990

[27] Bonnans J. F., Cominetti R., Shapiro A., “Second order optimality conditions based on parabolic second order tangent sets”, SIAM J. Optimization, 9:2 (1999), 466–492 | DOI

[28] Gorokhovik V. V., “Usloviya optimalnosti pervogo poryadka v zadachakh vektornoi optimizatsii s kvazidifferentsiruemym tselevym otobrazheniem i netranzitivnym otnosheniem predpochteniya”, Dokl. NAN Belarusi, 57:6 (2013), 13–19

[29] Shapiro A., “Semi-infinite programming, duality, discretization and optimality conditions”, Optimization, 58:2 (2009), 133–161 | DOI