Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2014_22_1_a3, author = {V. V. Gorokhovik}, title = {First and second necessary optimality conditions for a discrete optimal control problem with nontransitive performance index}, journal = {Trudy Instituta matematiki}, pages = {35--50}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a3/} }
TY - JOUR AU - V. V. Gorokhovik TI - First and second necessary optimality conditions for a discrete optimal control problem with nontransitive performance index JO - Trudy Instituta matematiki PY - 2014 SP - 35 EP - 50 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a3/ LA - ru ID - TIMB_2014_22_1_a3 ER -
%0 Journal Article %A V. V. Gorokhovik %T First and second necessary optimality conditions for a discrete optimal control problem with nontransitive performance index %J Trudy Instituta matematiki %D 2014 %P 35-50 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a3/ %G ru %F TIMB_2014_22_1_a3
V. V. Gorokhovik. First and second necessary optimality conditions for a discrete optimal control problem with nontransitive performance index. Trudy Instituta matematiki, Tome 22 (2014) no. 1, pp. 35-50. http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a3/
[1] Gorokhovik V. V., Simonov A. Yu., “Usloviya optimalnosti v zadache terminalnogo upravleniya vykhodom diskretnoi sistemy po otnosheniyu predpochteniya”, Vestsi AN Belarusi. Cer. fiz.-mat. navuk, 1998, no. 4, 41–46
[2] Gorokhovik V. V., Gorokhovik S. Ya., Marinkovich B., “Neobkhodimye usloviya optimalnosti v gladkoi zadache upravleniya diskretnoi sistemoi s vektornym pokazatelem kachestva”, Tr. In-ta matematiki, 17:1 (2009), 27–40
[3] Gorokhovik V. V., Gorokhovik S. Ya., Marinkovic B., “First and second order necessary optimality conditions for a discrete-time optimal control problem with a vector-valued objective function”, Positivity, 17:3 (2013), 483–500 | DOI
[4] Levin M. I., Makarov V. L., Rubinov A. M., Matematicheskie modeli ekonomicheskikh mekhanizmov, Nauka, M., 1993
[5] Akilov G. P., Kutateladze S. S., Uporyadochennye vektornye prostranstva, Nauka, SO, Novosibirsk, 1978
[6] Gorokhovik V. V., Vypuklye i negladkie zadachi vektornoi optimizatsii, Nauka i tekhnika, Minsk, 1990; 2-ое изд., УРСС, М., 2012
[7] Demyanov V. F., “O kvazidifferentsiruemykh funktsionalakh”, Dokl. AN SSSR, 250:1 (1980), 21–25
[8] Gorokhovik V. V., “$\varepsilon$-Quasidufferentiability of real-valued functions and optimality conditions in extremal problems”, Mathematical Programming Study, 29 (1986), 203–218 | DOI
[9] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990
[10] Shapiro A., “Quasidufferential calculus and first-order optimality conditions in nonsmooth optimization”, Mathematical Programming Study, 29 (1986), 56–68 | DOI
[11] Gorokhovik V. V., Rachkovskii N. N., Usloviya pervogo i vtorogo poryadka lokalnoi sobstvennoi minimalnosti v zadachakh vektornoi optimizatsii, Preprint No 50(450), In-t matematiki AN BSSR, Minsk, 1990
[12] Gorokhovik V. V., “Kasatelnye vektory vtorogo poryadka k mnozhestvam i usloviya minimalnosti dlya tochek podmnozhestv uporyadochennykh normirovannykh prostranstv”, Tr. In-ta matematiki, 14:2 (2006), 35–47
[13] Bakhtin V. I., Gorokhovik V. V., “Usloviya optimalnosti pervogo i vtorogo poryadkov v zadachakh vektornoi optimizatsii na metricheskikh prostranstvakh”, Tr. In-ta matematiki i mekhaniki Uralskogo otdeleniya RAN, 15, no. 4, 2009, 32–43
[14] Gorokhovik V. V., “Usloviya minimalnosti v zadachakh vektornoi optimizatsii s netelesnym konusom polozhitelnykh elementov”, Zhurn. vychislit. matematiki i mat. fiziki, 52:7 (2012), 1192–1214
[15] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979
[16] Vasilev F. P., Metody optimizatsii, Faktorial, M., 2002
[17] Gorokhovik V. V., Konechnomernye zadachi optimizatsii, Izd. tsentr BGU, Minsk, 2007
[18] Mordukhovich B. S., Variational Analysis and Generalized Differentiation, v. I, Basic Theory; v. II, Applications, Springer, Berlin et al., 2005
[19] Rockafellar R. T., Wets R. J.-B., Variational analysis, Springer-Verlag, Berlin, 1998
[20] Bonnans J. F., Shapiro A., Perturbation Analysis of Optimization Problems, Springer, Berlin, 2000
[21] Gaishun I. V., Sistemy s diskretnym vremenem, Institut matematiki NAN Belarusi, Minsk, 2001
[22] Ben-Tal A., “Second order and related extremality conditions in nonlinear programming”, J. Optim. Theory and Appl., 31 (1980), 143–165 | DOI
[23] Ben-Tal A., Zowe J., “A unified theory of first and second order conditions for extremum problems in topological vector spaces”, Math. Programming Study, 19 (1982), 39–76 | DOI
[24] Demyanov V. F., Priblizhennye metody resheniya ekstremalnykh zadach, Izd-vo Izd-vo Leningrad. un-ta, L., 1968
[25] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969
[26] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhauser, Boston, 1990
[27] Bonnans J. F., Cominetti R., Shapiro A., “Second order optimality conditions based on parabolic second order tangent sets”, SIAM J. Optimization, 9:2 (1999), 466–492 | DOI
[28] Gorokhovik V. V., “Usloviya optimalnosti pervogo poryadka v zadachakh vektornoi optimizatsii s kvazidifferentsiruemym tselevym otobrazheniem i netranzitivnym otnosheniem predpochteniya”, Dokl. NAN Belarusi, 57:6 (2013), 13–19
[29] Shapiro A., “Semi-infinite programming, duality, discretization and optimality conditions”, Optimization, 58:2 (2009), 133–161 | DOI