Optimal Banach function space generated with the cone of nonnegative increasing functions
Trudy Instituta matematiki, Tome 22 (2014) no. 1, pp. 24-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with the effective constructions for the optimal Banach ideal and symmetric spaces (of functions $f:~[0,T]\to\mathbb{R}$) containing a cone of nonnegative and increasingly monotone functions with respect to the natural functional generated $L_p$-norm ($1\le p\infty$). The first of these spaces turns out to be the space of measurable functions $f$ such that $\|f\|_{L_\infty(\cdot,T)}\in L_p(0,T)$; this space can be endowed with the norm $\|\,\|f\|_{L_\infty(\cdot,T)}\|f\|_{L_p(0,T)}$. The second coincides with the usual space $L_p$.
@article{TIMB_2014_22_1_a2,
     author = {M. L. Goldman and P. P. Zabreiko},
     title = {Optimal {Banach} function space generated with the cone of nonnegative increasing functions},
     journal = {Trudy Instituta matematiki},
     pages = {24--34},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a2/}
}
TY  - JOUR
AU  - M. L. Goldman
AU  - P. P. Zabreiko
TI  - Optimal Banach function space generated with the cone of nonnegative increasing functions
JO  - Trudy Instituta matematiki
PY  - 2014
SP  - 24
EP  - 34
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a2/
LA  - ru
ID  - TIMB_2014_22_1_a2
ER  - 
%0 Journal Article
%A M. L. Goldman
%A P. P. Zabreiko
%T Optimal Banach function space generated with the cone of nonnegative increasing functions
%J Trudy Instituta matematiki
%D 2014
%P 24-34
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a2/
%G ru
%F TIMB_2014_22_1_a2
M. L. Goldman; P. P. Zabreiko. Optimal Banach function space generated with the cone of nonnegative increasing functions. Trudy Instituta matematiki, Tome 22 (2014) no. 1, pp. 24-34. http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a2/

[1] Bennett C., Sharpley R., Interpolation of Operators, Academic, New York, 1988

[2] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978

[3] Zabreiko P. P., “Nelineinye integralnye operatory”, Trudy seminara po funktsionalnomu analizu, 8, Voronezh, 1966, 3–148

[4] Zabreiko P. P., Issledovaniya po teorii integralnykh operatorov v idealnykh prostranstvakh funktsii, Dis. \ldots d-ra fiz.-mat. nauk, Voronezh. gos. un-t, Voronezh, 1968

[5] Zabreiko P. P., “Idealnye prostranstva funktsii, I”, Vestn. Yarosl. un-ta, 1974, no. 8, 12–52

[6] Goldman M. L., Zabreiko P. P., “Optimalnoe vosstanovlenie banakhova funktsionalnogo prostranstva po konusu neotritsatelnykh funktsii”, Trudy Matematich. in-ta im. V. A. Steklova (to appear)

[7] Burenkov V. I., Goldman M. L., “Vychislenie normy polozhitelnogo operatora na konuse monotonnykh funktsii”, Trudy Matematich. in-ta im. V. A. Steklova, 210, 1995, 65–89

[8] Goldman M. L., Haroske D., “Estimates for continuity envelopes and approximation numbers of Bessel potentials”, Journal of Approximation Theory, 172 (2013), 58–85 | DOI

[9] Sawyer E., “Boundedness of classical operators on classical Lorentz spaces”, Studia Math., 96 (1990), 145–158

[10] Goldman M. L., Heinig H. P., Stepanov V. D., “On the principle of duality in Lorentz spaces”, Canadian J. Math., 48 (1996), 959–979 | DOI