Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2014_22_1_a2, author = {M. L. Goldman and P. P. Zabreiko}, title = {Optimal {Banach} function space generated with the cone of nonnegative increasing functions}, journal = {Trudy Instituta matematiki}, pages = {24--34}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a2/} }
TY - JOUR AU - M. L. Goldman AU - P. P. Zabreiko TI - Optimal Banach function space generated with the cone of nonnegative increasing functions JO - Trudy Instituta matematiki PY - 2014 SP - 24 EP - 34 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a2/ LA - ru ID - TIMB_2014_22_1_a2 ER -
M. L. Goldman; P. P. Zabreiko. Optimal Banach function space generated with the cone of nonnegative increasing functions. Trudy Instituta matematiki, Tome 22 (2014) no. 1, pp. 24-34. http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a2/
[1] Bennett C., Sharpley R., Interpolation of Operators, Academic, New York, 1988
[2] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978
[3] Zabreiko P. P., “Nelineinye integralnye operatory”, Trudy seminara po funktsionalnomu analizu, 8, Voronezh, 1966, 3–148
[4] Zabreiko P. P., Issledovaniya po teorii integralnykh operatorov v idealnykh prostranstvakh funktsii, Dis. \ldots d-ra fiz.-mat. nauk, Voronezh. gos. un-t, Voronezh, 1968
[5] Zabreiko P. P., “Idealnye prostranstva funktsii, I”, Vestn. Yarosl. un-ta, 1974, no. 8, 12–52
[6] Goldman M. L., Zabreiko P. P., “Optimalnoe vosstanovlenie banakhova funktsionalnogo prostranstva po konusu neotritsatelnykh funktsii”, Trudy Matematich. in-ta im. V. A. Steklova (to appear)
[7] Burenkov V. I., Goldman M. L., “Vychislenie normy polozhitelnogo operatora na konuse monotonnykh funktsii”, Trudy Matematich. in-ta im. V. A. Steklova, 210, 1995, 65–89
[8] Goldman M. L., Haroske D., “Estimates for continuity envelopes and approximation numbers of Bessel potentials”, Journal of Approximation Theory, 172 (2013), 58–85 | DOI
[9] Sawyer E., “Boundedness of classical operators on classical Lorentz spaces”, Studia Math., 96 (1990), 145–158
[10] Goldman M. L., Heinig H. P., Stepanov V. D., “On the principle of duality in Lorentz spaces”, Canadian J. Math., 48 (1996), 959–979 | DOI