Optimal Banach function space generated with the cone of nonnegative increasing functions
Trudy Instituta matematiki, Tome 22 (2014) no. 1, pp. 24-34
Voir la notice de l'article provenant de la source Math-Net.Ru
The article deals with the effective constructions for the optimal Banach ideal and symmetric spaces (of functions $f:~[0,T]\to\mathbb{R}$) containing a cone of nonnegative and increasingly monotone functions with respect to the natural functional generated $L_p$-norm ($1\le p\infty$). The first of these spaces turns out to be the space of measurable functions $f$ such that $\|f\|_{L_\infty(\cdot,T)}\in L_p(0,T)$; this space can be endowed with the norm $\|\,\|f\|_{L_\infty(\cdot,T)}\|f\|_{L_p(0,T)}$. The second coincides with the usual space $L_p$.
@article{TIMB_2014_22_1_a2,
author = {M. L. Goldman and P. P. Zabreiko},
title = {Optimal {Banach} function space generated with the cone of nonnegative increasing functions},
journal = {Trudy Instituta matematiki},
pages = {24--34},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a2/}
}
TY - JOUR AU - M. L. Goldman AU - P. P. Zabreiko TI - Optimal Banach function space generated with the cone of nonnegative increasing functions JO - Trudy Instituta matematiki PY - 2014 SP - 24 EP - 34 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a2/ LA - ru ID - TIMB_2014_22_1_a2 ER -
M. L. Goldman; P. P. Zabreiko. Optimal Banach function space generated with the cone of nonnegative increasing functions. Trudy Instituta matematiki, Tome 22 (2014) no. 1, pp. 24-34. http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a2/