A gradient descent method for solving of one class of nonlinear multiparameter eigenvalue problems
Trudy Instituta matematiki, Tome 22 (2014) no. 1, pp. 122-130

Voir la notice de l'article provenant de la source Math-Net.Ru

In the real Hilbert space the nonlinear multiparameter spectral problem is put in accordance to the variation problem on zero minimum of some functional. The equivalence of spectral and variation problems is proved. On the base of gradient procedure the numerical algorithm of finding its eigenvalues and eigenvectors is proposed. The local convergence of this algorithm is proved. The practical application of the algorithm is illustrated on example of nonlinear two-parameter eigenvalue problem.
@article{TIMB_2014_22_1_a10,
     author = {V. V. Khlobystov and B. M. Podlevskyi and O. S. Yaroshko},
     title = {A gradient descent method for solving of one class of nonlinear multiparameter eigenvalue problems},
     journal = {Trudy Instituta matematiki},
     pages = {122--130},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a10/}
}
TY  - JOUR
AU  - V. V. Khlobystov
AU  - B. M. Podlevskyi
AU  - O. S. Yaroshko
TI  - A gradient descent method for solving of one class of nonlinear multiparameter eigenvalue problems
JO  - Trudy Instituta matematiki
PY  - 2014
SP  - 122
EP  - 130
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a10/
LA  - en
ID  - TIMB_2014_22_1_a10
ER  - 
%0 Journal Article
%A V. V. Khlobystov
%A B. M. Podlevskyi
%A O. S. Yaroshko
%T A gradient descent method for solving of one class of nonlinear multiparameter eigenvalue problems
%J Trudy Instituta matematiki
%D 2014
%P 122-130
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a10/
%G en
%F TIMB_2014_22_1_a10
V. V. Khlobystov; B. M. Podlevskyi; O. S. Yaroshko. A gradient descent method for solving of one class of nonlinear multiparameter eigenvalue problems. Trudy Instituta matematiki, Tome 22 (2014) no. 1, pp. 122-130. http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a10/