Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2014_22_1_a10, author = {V. V. Khlobystov and B. M. Podlevskyi and O. S. Yaroshko}, title = {A gradient descent method for solving of one class of nonlinear multiparameter eigenvalue problems}, journal = {Trudy Instituta matematiki}, pages = {122--130}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a10/} }
TY - JOUR AU - V. V. Khlobystov AU - B. M. Podlevskyi AU - O. S. Yaroshko TI - A gradient descent method for solving of one class of nonlinear multiparameter eigenvalue problems JO - Trudy Instituta matematiki PY - 2014 SP - 122 EP - 130 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a10/ LA - en ID - TIMB_2014_22_1_a10 ER -
%0 Journal Article %A V. V. Khlobystov %A B. M. Podlevskyi %A O. S. Yaroshko %T A gradient descent method for solving of one class of nonlinear multiparameter eigenvalue problems %J Trudy Instituta matematiki %D 2014 %P 122-130 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a10/ %G en %F TIMB_2014_22_1_a10
V. V. Khlobystov; B. M. Podlevskyi; O. S. Yaroshko. A gradient descent method for solving of one class of nonlinear multiparameter eigenvalue problems. Trudy Instituta matematiki, Tome 22 (2014) no. 1, pp. 122-130. http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a10/
[1] Abramov A. A., Ul'yanova V. I., Yukhno L. F., “A method for solving the multiparameter eigenvalue problem for certain systems of differential equations”, Comput. Math. Meth. Phys., 40:1 (2000), 18–26
[2] Atkinson F. V., Multiparameter Eigenvalue Problems. Matrices and Compact Operators, v. 1, Academic Press, New York–London, 1972
[3] Blum E. K., Curtis A. R., “A Convergent Gradient Method for Matrix Eigenvector-Eigentuple Problems”, Numer. Math., 31:3 (1978), 247–263 | DOI
[4] Browne P. J., Sleeman B. D., “A numerical technique for multiparameter eigenvalue problems”, IMA J. Numer Anal., 2:3 (1982), 451–457 | DOI
[5] Khlobystov V. V., Podlevskyi B. M., “Numerical method of finding bifurcation points of linear two-parameter eigenvalue problems”, Comput. Meth. Appl. Math., 9:4 (2009), 332–338 | DOI
[6] Khlobystov V. V., Podlevskyi B. M., “Variation-gradient method of the solution of one class of nonlinear multiparameter eigenvalue problems”, J. Numer. Appl. Math., 2009, no. 1(97), 70–78
[7] Müller R. E., “Numerical Solution of Multiparameter Eigenvalue Problems”, ZAMM, 62:12 (1982), 681–686 | DOI
[8] Podlevskyi B. M., “A variational aproach for solving the linear multiparameter eigenvalue problems”, Ukrainian Math. Journal, 61:9 (2009), 1247–1256
[9] Podlevskyi B. M., “On some nonlinear two-parameter spectral problems of mathematical physics”, Mathematical modeling, 22:5 (2010), 131–145
[10] Podlevskyi B. M., Khlobystov V. V., “A gradient method for solving the nonlinear multiparameter spectral problems”, Reports NAS of Ukraine, 2012, no. 8, 22–27 (in Ukraine)
[11] Podlevskyi B. M., Khlobystov V. V., “On one approach to finding eigenvalue curves of linear two-parameter spectral problems”, J. Mathematical Sciences, 167:1 (2010), 96–106 | DOI
[12] Sleeman B. D., Multiparameter spectral theory in Hilbert space, Pitnam Press, London–San Francisco–Melbourne, 1978
[13] Volkmer H., Multiparameter eigenvalue problems and expansion theorem, Lect. Notes Math., 1336, 1988
[14] Berezin I. S., Zydkov N. P., Calculation methods, v. 1, 3-th edition, Nauka, M., 1966