An analysis of behavior of fuzzy differential equations with switching solutions
Trudy Instituta matematiki, Tome 22 (2014) no. 1, pp. 6-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the stability of solutions of a new class of fuzzy differential equations with switching. We introduce the concept of fuzzy hybrid automata and a hybrid trajectory as a generalized formalism for switching systems. Also, we introduce the concept of fuzzy stability and theorems giving the sufficient conditions for stability.
@article{TIMB_2014_22_1_a1,
     author = {A. S. Bychkov},
     title = {An analysis of behavior of fuzzy differential equations with switching solutions},
     journal = {Trudy Instituta matematiki},
     pages = {6--23},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a1/}
}
TY  - JOUR
AU  - A. S. Bychkov
TI  - An analysis of behavior of fuzzy differential equations with switching solutions
JO  - Trudy Instituta matematiki
PY  - 2014
SP  - 6
EP  - 23
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a1/
LA  - ru
ID  - TIMB_2014_22_1_a1
ER  - 
%0 Journal Article
%A A. S. Bychkov
%T An analysis of behavior of fuzzy differential equations with switching solutions
%J Trudy Instituta matematiki
%D 2014
%P 6-23
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a1/
%G ru
%F TIMB_2014_22_1_a1
A. S. Bychkov. An analysis of behavior of fuzzy differential equations with switching solutions. Trudy Instituta matematiki, Tome 22 (2014) no. 1, pp. 6-23. http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a1/

[1] Kats I. Ya., Martynyuk A. A., Stability and Stabilization of Nonlinear Systems with Random Structures, Stability and Control: Theory, Methods and Applications, 18, Taylor and Francis, London, 2002

[2] Gruiich L. T., Martynyuk A. A., Ribbens-Pavella M., Ustoichivost krupnomasshtabnykh sistem pri strukturnykh i singulyarnykh vozmuscheniyakh, Nauk. Dumka, Kiev, 1984

[3] Oberguggenberger M., Pittschmann S., “Differential Equations With Fuzzy Parameters”, Mathematical and Computer Modelling of Dynamical Systems: Methods, Tools and Applications in Engineering and Related Sciences, 5:3 (1999)

[4] Vatsala A. S., “Impulsive hybryd fuzzy differential equations”, Automatic Control and Robotics. Series: Mechanics, 3:14 (2003), 851–859

[5] Bychkov A. S., “Ob odnom razvitii teorii vozmozhnostei”, Kibernetika i sistemnyi analiz, 2007, no. 5, 67–72

[6] Bychkov A. S., “Modelling and studying fuzzy dynamical systems”, J. of Mathematical Sciences, 157:3 (2009), 466–479 | DOI

[7] Belov Yu. A., Bychkov A. S., Zavorotnyy A. L., Merkuriev M. G., “Reduction measurements for calculation in Fuzzy experiment scheme and soft modelling of dynamic processes in a Non-crisp conditions”, Simulation and Optimization Methods in Risk and Reliability Theory. Series: Advances in Operations Research, 2009, 113–136

[8] Bychkov O. S., Ivanov E. V., “Chislennoe reshenie nechetkogo differentsialnogo uravneniya”, Matematicheskie mashiny i sistemy, 2009, no. 1, 31–39