On the size of errors in the method of successive approximations
Trudy Instituta matematiki, Tome 21 (2013) no. 2, pp. 91-102

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach to studying the asymptotic behavior of lengths of vectors-errors in the method of successive approximations for linear operator equations is given. It is shown that for all large enough numbers of iterations the greatest possible errors are the most probable ones. The explicit form for asymptotics of the errors is obtained.
@article{TIMB_2013_21_2_a5,
     author = {P. P. Zabreiko and A. N. Tanyhina},
     title = {On the size of errors in the method of successive approximations},
     journal = {Trudy Instituta matematiki},
     pages = {91--102},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a5/}
}
TY  - JOUR
AU  - P. P. Zabreiko
AU  - A. N. Tanyhina
TI  - On the size of errors in the method of successive approximations
JO  - Trudy Instituta matematiki
PY  - 2013
SP  - 91
EP  - 102
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a5/
LA  - ru
ID  - TIMB_2013_21_2_a5
ER  - 
%0 Journal Article
%A P. P. Zabreiko
%A A. N. Tanyhina
%T On the size of errors in the method of successive approximations
%J Trudy Instituta matematiki
%D 2013
%P 91-102
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a5/
%G ru
%F TIMB_2013_21_2_a5
P. P. Zabreiko; A. N. Tanyhina. On the size of errors in the method of successive approximations. Trudy Instituta matematiki, Tome 21 (2013) no. 2, pp. 91-102. http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a5/