On the size of errors in the method of successive approximations
Trudy Instituta matematiki, Tome 21 (2013) no. 2, pp. 91-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach to studying the asymptotic behavior of lengths of vectors-errors in the method of successive approximations for linear operator equations is given. It is shown that for all large enough numbers of iterations the greatest possible errors are the most probable ones. The explicit form for asymptotics of the errors is obtained.
@article{TIMB_2013_21_2_a5,
     author = {P. P. Zabreiko and A. N. Tanyhina},
     title = {On the size of errors in the method of successive approximations},
     journal = {Trudy Instituta matematiki},
     pages = {91--102},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a5/}
}
TY  - JOUR
AU  - P. P. Zabreiko
AU  - A. N. Tanyhina
TI  - On the size of errors in the method of successive approximations
JO  - Trudy Instituta matematiki
PY  - 2013
SP  - 91
EP  - 102
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a5/
LA  - ru
ID  - TIMB_2013_21_2_a5
ER  - 
%0 Journal Article
%A P. P. Zabreiko
%A A. N. Tanyhina
%T On the size of errors in the method of successive approximations
%J Trudy Instituta matematiki
%D 2013
%P 91-102
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a5/
%G ru
%F TIMB_2013_21_2_a5
P. P. Zabreiko; A. N. Tanyhina. On the size of errors in the method of successive approximations. Trudy Instituta matematiki, Tome 21 (2013) no. 2, pp. 91-102. http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a5/

[1] Krasnoselskii M. A., Krein S. G., “Zamechanie o raspredelenii oshibok pri reshenii sistemy lineinykh uravnenii pri pomoschi iteratsionnogo protsessa”, Uspekhi mat. nauk, 7:4 (1952), 157–161 | MR | Zbl

[2] Peradze D. G., “O raspredelenii oshibok pri reshenii sistemy lineinykh algebraicheskikh uravnenii metodom iteratsii”, Soobscheniya AN Gruz. SSR, 50:2 (1968), 289–294 | MR | Zbl

[3] Yamamoto T., “On the distribution of errors in the iterative solution of a system of linear equations”, Numer. Math., 24 (1975), 71–79 | DOI | MR | Zbl

[4] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[5] Godunov B. A., Zabreiko P. P., “Kharakter skhodimosti posledovatelnykh priblizhenii dlya uravnenii s gladkimi operatorami”, Dokl. AN BSSR, 33:7 (1989), 583–586 | MR | Zbl

[6] Godunov B. A., Zabrejko P. P., “Geometric characteristics for convergence and asymptotics of successive approximations of equations with smooth operators”, Studia Mathematica, 116:3 (1995), 225–238 | MR | Zbl

[7] Godunov B. A., “Povedenie posledovatelnykh priblizhenii dlya nelineinykh operatorov”, Dokl. AN Ukr. SSR, 1971, no. 4, 294–297 | MR | Zbl

[8] Godunov B. A., “Ubystrenie skhodimosti v metode posledovatelnykh priblizhenii”, Operatornye metody v differentsialnykh uravneniyakh, Voronezh, 1979, 18–25

[9] Daneš J., Lineární a nelineární operátorové rovnice, Praha, 1987

[10] Dolicanin C. B., Antonevich A. B., Dynamical systems generated by linear maps, State University of Novi Pazar, Novi Pazar, 2012

[11] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v 3 t., v. III, Fizmatlit, M.–L., 2003