Principle of non-existence of nonlinear operator equation solutions
Trudy Instituta matematiki, Tome 21 (2013) no. 2, pp. 81-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main part of article deals with the following non-existence principle: if an operator $A$ has a fixed point $x_0$ and satisfied the variable Lipschitz condition then there exists a ball $B(x_0,r)$ without other fixed points; moreover, it is possible to give the lower estimates for the radius $r$ of this non-existence ball. Also it is shown that similar results can be obtained for Minty–Browder monotonic mappings. There are also several examples of nonlinear integral equations demonstrating the efficiency of presented results.
@article{TIMB_2013_21_2_a4,
     author = {P. P. Zabreiko and Yu. V. Korots},
     title = {Principle of non-existence of nonlinear operator equation solutions},
     journal = {Trudy Instituta matematiki},
     pages = {81--90},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a4/}
}
TY  - JOUR
AU  - P. P. Zabreiko
AU  - Yu. V. Korots
TI  - Principle of non-existence of nonlinear operator equation solutions
JO  - Trudy Instituta matematiki
PY  - 2013
SP  - 81
EP  - 90
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a4/
LA  - ru
ID  - TIMB_2013_21_2_a4
ER  - 
%0 Journal Article
%A P. P. Zabreiko
%A Yu. V. Korots
%T Principle of non-existence of nonlinear operator equation solutions
%J Trudy Instituta matematiki
%D 2013
%P 81-90
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a4/
%G ru
%F TIMB_2013_21_2_a4
P. P. Zabreiko; Yu. V. Korots. Principle of non-existence of nonlinear operator equation solutions. Trudy Instituta matematiki, Tome 21 (2013) no. 2, pp. 81-90. http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a4/

[1] Zabreiko P. P., Korots Yu. V., “Analiz neyavnykh posledovatelnykh priblizhenii”, Dokl. NAN Belarusi, 53:6 (2009), 33–38 | MR | Zbl

[2] Zabreiko P. P., Korots Yu. V., “Printsip mazhoriruemykh otobrazhenii dlya obobschennykh integralnykh uravnenii Gammershteina”, Dokl. NAN Belarusi, 54:4 (2010), 5–12 | MR | Zbl

[3] Korots Yu. V., “Integralnye uravneniya s diagonalno predstavimymi operatorami”, Dokl. NAN Belarusi, 55:4 (2011), 35–41 | MR | Zbl

[4] Korots Y. V., Zabreiko P. P., “The majorization fixed point principle and applications to nonlinear integral equations”, Fixed Point Theory, 13:2 (2012), 547–564 | MR | Zbl

[5] Zabreiko P. P., “Some Elementary Fixed Point Theory”, Analytic Methods of Analysis and Differential Equations, eds. Kilbas A. A., Rogosin S. V., Cambridge Scientifical Publishers Ltd., 2006, 255–272 | MR

[6] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[7] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstve summiruemykh funktsii, Nauka, M., 1966 | MR | Zbl

[8] Ezquerro J. A., Hernandez M. A., “Picard's Iterations for Integral Equations of Mixed Hammerstein Type”, Canad. Math. Bull., 51:3 (2008), 372–377 | DOI | MR | Zbl

[9] Zabreiko P. P., Korots Yu. V., “Ob odnoi modifikatsii teoremy Minti–Braudera”, Dokl. NAN Belarusi, 55:5 (2011), 22–27 | MR | Zbl