Effective version of the proof of V.\,G.~Sprindzuk’s problem
Trudy Instituta matematiki, Tome 21 (2013) no. 2, pp. 162-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

A quantitative form of V. G. Sprindzuk’s theorem on the exact order of transcendence of almost all real numbers is obtained be applying new estimates for values of integer polynomials on short intervals.
@article{TIMB_2013_21_2_a10,
     author = {N. V. Shamukova and V. A. Davydova},
     title = {Effective version of the proof of {V.\,G.~Sprindzuk{\textquoteright}s} problem},
     journal = {Trudy Instituta matematiki},
     pages = {162--171},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a10/}
}
TY  - JOUR
AU  - N. V. Shamukova
AU  - V. A. Davydova
TI  - Effective version of the proof of V.\,G.~Sprindzuk’s problem
JO  - Trudy Instituta matematiki
PY  - 2013
SP  - 162
EP  - 171
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a10/
LA  - ru
ID  - TIMB_2013_21_2_a10
ER  - 
%0 Journal Article
%A N. V. Shamukova
%A V. A. Davydova
%T Effective version of the proof of V.\,G.~Sprindzuk’s problem
%J Trudy Instituta matematiki
%D 2013
%P 162-171
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a10/
%G ru
%F TIMB_2013_21_2_a10
N. V. Shamukova; V. A. Davydova. Effective version of the proof of V.\,G.~Sprindzuk’s problem. Trudy Instituta matematiki, Tome 21 (2013) no. 2, pp. 162-171. http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a10/

[1] Kassels Dzh. V. S., Vvedenie v teoriyu diofantovykh priblizhenii, Izd-vo inostr. lit., M., 1961 | MR

[2] Mahler K., “Über das Mass der Menge aller S-Zahlen”, Math. Annalen, 106 (1932), 131–139 | DOI | MR

[3] Sprindzhuke V. G., Problema Malera v metricheskoi teorii chisel, Nauka i tekhnika, Minsk, 1967

[4] Baker A., “On a theorem of Sprindzuk”, Proc. Royal Soc., 292 (1966), 92–104 | DOI | Zbl

[5] Bernik V. I., “O tochnom poryadke priblizheniya nulya znacheniyami tselochislennykh mnogochlenov”, Acta Arithmetica, 53:1 (1989), 17–28 | MR | Zbl

[6] Vasilev D. V., “Diofantovy mnozhestva v $\mathbb{C}$ i razmernost Khausdorfa”, Sb. statei, posvyaschennyi 60-letiyu so dnya rozhdeniya professora V. G. Sprindzhuka, In-t matematiki NAN Belarusi, Minsk, 1997, 21–28

[7] Beresnevich V. V., Bernik V. I., Kovalevskaya E. I., “On approximation of $p$-adic numbers by $p$-adic algebraic numbers”, J. Number Theory, 111:1 (2005), 33–56 | DOI | MR | Zbl

[8] Khintchine A. J., “Einige Zätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen”, Math. Ann., 92 (1924), 115–125 | DOI | MR | Zbl

[9] Beresnevich V. V., “On approximation of real numbers by real algebraic numbers”, Acta Arithmetica, 90:2 (1999), 97–112 | MR | Zbl

[10] Bugeaud Y., J. London Math. Soc., 65 (2002), 547–559 | DOI | MR | Zbl

[11] Bernik V. I., Dodson M. M., Metric Diophantine approximation on manifolds, CUP, Cambridge, 1999 | MR