Generalized soluble $\mathrm{AFM}$-groups
Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 52-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an $\mathbf{R}\,G$-module $A$ such that $\mathbf{R}$ is an associative ring, $G$ is a group, $C_G(A)=1$ and each proper subgroup $H$ of a group $G$ for which $A/C_A(H)$ is not a minimax $\mathbf{R}$-module, is finitely generated. A group $G$ with these conditions is called an $\mathrm{A}\mathrm{F}\mathrm{M}$-group. It is proved that a locally soluble $\mathrm{A}\mathrm{F}\mathrm{M}$-group $G$ is hyperabelian in the case where $\mathbf{R}=\mathbb{Z}$ is a ring of integers. It is described the structure of an $\mathrm{A}\mathrm{F}\mathrm{M}$-group $G$ in the case where $G$ is a finitely generated soluble group, $\mathbf{R}=\mathbb{Z}$ is a ring of integers and the quotient module $A/C_A(G)$ is not a minimax $\mathbb{Z}$-module.
@article{TIMB_2013_21_1_a6,
     author = {O. Yu. Dashkova},
     title = {Generalized soluble $\mathrm{AFM}$-groups},
     journal = {Trudy Instituta matematiki},
     pages = {52--62},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a6/}
}
TY  - JOUR
AU  - O. Yu. Dashkova
TI  - Generalized soluble $\mathrm{AFM}$-groups
JO  - Trudy Instituta matematiki
PY  - 2013
SP  - 52
EP  - 62
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a6/
LA  - ru
ID  - TIMB_2013_21_1_a6
ER  - 
%0 Journal Article
%A O. Yu. Dashkova
%T Generalized soluble $\mathrm{AFM}$-groups
%J Trudy Instituta matematiki
%D 2013
%P 52-62
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a6/
%G ru
%F TIMB_2013_21_1_a6
O. Yu. Dashkova. Generalized soluble $\mathrm{AFM}$-groups. Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 52-62. http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a6/

[1] Phillips R. E., “The structure of groups of finitary transformations”, J. Algebra, 119:2 (1988), 400–448 | DOI | MR | Zbl

[2] Phillips R. E., “Finitary linear groups: a survey”, Finite and locally finite groups, NATO ASI ser. C Math. Phys. Sci., 471, Kluver Acad. Publ., Dordrecht, 1995, 111–146 | MR | Zbl

[3] Kurdachenko L. A., Muñoz-Escolano J. M., Otal J., “Antifinitary linear groups”, Forum Math., 20:1 (2008), 27–44 | DOI | MR | Zbl

[4] Wehrfritz B. A. F., “Artinian-finitary groups over commutative rings”, Illinois J. Math., 47:1–2 (2003), 551–565 | MR | Zbl

[5] Wehrfritz B. A. F., “Artinian-finitary groups over commutative rings and non-commutative rings”, J. Lond. Math. Soc. (2), 70:2 (2004), 325–340 | DOI | MR | Zbl

[6] Wehrfritz B. A. F., “Artinian-finitary groups are locally normal-finitary”, J. Algebra, 287:2 (2005), 417–431 | DOI | MR | Zbl

[7] Wehrfritz B. A. F., “Finitary and artinian-finitary groups over the integers $\mathbb{Z}$”, Ukr. Math. J., 54:6 (2002), 753–763 | DOI | MR | Zbl

[8] Kurdachenko L. A., “O gruppakh s minimaksnymi klassami sopryazhennykh elementov”, Beskonechnye gruppy i primykayuschie algebraicheskie struktury, AN Ukrainy, Kiev, 1993, 160–177 | Zbl

[9] Dashkova O. Yu., “Lokalno razreshimye $\mathrm{AFN}$-gruppy”, Problemy fiziki, matematiki i tekhniki, 2012, no. 3(12), 58–64

[10] Dashkova O. Yu., “On locally soluble $\mathrm{AFN}$-groups”, Algebra and Discrete Mathematics, 14:1 (2012), 37–48 | MR

[11] Dashkova O. Yu., “Lokalno razreshimye $\mathrm{AFA}$-gruppy”, Ukr. mat. zhurn., 65:4 (2013), 459–469

[12] Dashkova O. Yu., “O modulnykh analogakh antifinitarnykh lineinykh grupp”, Gruppy i grafy, Itogi nauki. Yug Rossii. Ser. Matematicheskii forum, 6, Vladikavkaz, 2012, 18–24 | Zbl

[13] Kurdachenko L. A., Subbotin I. Ya., Semko N. N., Insight into modules over dedekind domains, National Academy of Sciences of Ukraine, Institute of Mathematics, Kyev, 2008

[14] Robinson D. J. S., Finiteness conditions and generalized soluble groups, v. 1, 2, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin–Heidelberg–New York, 1972

[15] Kurdachenko L. A., “Neperiodicheskie FC-gruppy i svyazannye klassy lokalno normalnykh grupp i abelevykh grupp bez krucheniya”, Sib. mat. zhurn., 27:2 (1986), 227–236 | Zbl

[16] Maltsev A. I., “O nekotorykh klassakh beskonechnykh razreshimykh grupp”, Mat. sb., 28:3 (1951), 567–588 | MR | Zbl

[17] Smirnov D. M., “O gruppakh avtomorfizmov razreshimykh grupp”, Mat. sb., 32:2 (1953), 365–384 | MR | Zbl

[18] Kurdachenko L. A., Otal J., Subbotin I. Ya., Artinian modules over group rings, Birghäuser, Basel–Boston–Berlin, 2007 | MR | Zbl

[19] Wehrfritz B. A. F., Infinite linear groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, New York–Heidelberg–Berlin, 1973 | MR | Zbl

[20] Kurosh A. G., Teoriya grupp, Nauka, M., 1967

[21] Smirnov D. M., “Ob avtomorfizmakh razreshimykh grupp”, Dokl. AN SSSR, 84 (1952), 891–894 | MR | Zbl