Generalized soluble $\mathrm{AFM}$-groups
Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 52-62
Voir la notice de l'article provenant de la source Math-Net.Ru
We study an $\mathbf{R}\,G$-module $A$ such that $\mathbf{R}$ is an associative ring, $G$ is a group, $C_G(A)=1$ and each proper subgroup $H$ of a group $G$ for which $A/C_A(H)$ is not a minimax $\mathbf{R}$-module, is finitely generated. A group $G$ with these conditions is called an $\mathrm{A}\mathrm{F}\mathrm{M}$-group. It is proved that a locally soluble $\mathrm{A}\mathrm{F}\mathrm{M}$-group $G$ is hyperabelian in the case where $\mathbf{R}=\mathbb{Z}$ is a ring of integers. It is described the structure of an $\mathrm{A}\mathrm{F}\mathrm{M}$-group $G$ in the case where $G$ is a finitely generated soluble group, $\mathbf{R}=\mathbb{Z}$ is a ring of integers and the quotient module $A/C_A(G)$ is not a minimax $\mathbb{Z}$-module.
@article{TIMB_2013_21_1_a6,
author = {O. Yu. Dashkova},
title = {Generalized soluble $\mathrm{AFM}$-groups},
journal = {Trudy Instituta matematiki},
pages = {52--62},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a6/}
}
O. Yu. Dashkova. Generalized soluble $\mathrm{AFM}$-groups. Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 52-62. http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a6/