On the intersection of maximal supersoluble subgroups of a finite group
Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 48-51
Voir la notice de l'article provenant de la source Math-Net.Ru
The hyper-generalized-center $genz^*(G)$ of a finite group $G$ coincides with the largest term of the chain of subgroups $1=Q_0(G)\le Q_1(G)\le\ldots\le Q_t(G)\le\ldots$ where $Q_i(G)/Q_{i-1}(G)$ is the subgroup of $G/Q_{i-1}(G)$ generated by the set of all cyclic $S$-quasinormal subgroups of $G/Q_{i-1}(G)$. It is proved that for any finite group $A,$ there is a finite group $G$ such that $A\le G$ and $genz^*(G)\ne\text{Int}_\mathfrak{U}(G)$.
@article{TIMB_2013_21_1_a5,
author = {Wenbin Guo and Alexander N. Skiba},
title = {On the intersection of maximal supersoluble subgroups of a finite group},
journal = {Trudy Instituta matematiki},
pages = {48--51},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a5/}
}
TY - JOUR AU - Wenbin Guo AU - Alexander N. Skiba TI - On the intersection of maximal supersoluble subgroups of a finite group JO - Trudy Instituta matematiki PY - 2013 SP - 48 EP - 51 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a5/ LA - en ID - TIMB_2013_21_1_a5 ER -
Wenbin Guo; Alexander N. Skiba. On the intersection of maximal supersoluble subgroups of a finite group. Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 48-51. http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a5/