Sylow properties of finite groups
Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 40-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{F}$ be a non-empty class of finite groups, and $\pi$ be some set of prime numbers. An $S_\pi$-subgroup of group $G$ that belongs to the class $\mathfrak{F}$ is called an $S_\pi(\mathfrak{F})$-subgroup of $G.$ $C_\pi(\mathfrak{F})$ is the class of all groups $G$ that have $S_\pi(\mathfrak{F})$-subgroups, and any two $S_\pi(\mathfrak{F})$-subgroups of $G$ are conjugate in $G;$ $D_\pi(\mathfrak{F})$ is the class of all $C_\pi(\mathfrak{F})$-groups $G$ in which every $\mathfrak{F}_\pi$-subgroup is contained in some $S_\pi(\mathfrak{F})$-subgroup of $G.$ In this paper the new D-theorems are obtained, a number of properties of $D_\pi(\mathfrak{F})$-groups, and $C_\pi(\mathfrak{F})$-groups are established.
@article{TIMB_2013_21_1_a4,
     author = {V. A. Vedernikov},
     title = {Sylow properties of finite groups},
     journal = {Trudy Instituta matematiki},
     pages = {40--47},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a4/}
}
TY  - JOUR
AU  - V. A. Vedernikov
TI  - Sylow properties of finite groups
JO  - Trudy Instituta matematiki
PY  - 2013
SP  - 40
EP  - 47
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a4/
LA  - ru
ID  - TIMB_2013_21_1_a4
ER  - 
%0 Journal Article
%A V. A. Vedernikov
%T Sylow properties of finite groups
%J Trudy Instituta matematiki
%D 2013
%P 40-47
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a4/
%G ru
%F TIMB_2013_21_1_a4
V. A. Vedernikov. Sylow properties of finite groups. Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 40-47. http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a4/

[1] Hall P., “Theorems like Sylow's”, Proc. London Math. Soc. Ser. 3, 6:22 (1956), 286–304 | DOI | MR | Zbl

[2] Chunikhin S. A., “O $\pi$-svoistvakh konechnykh grupp”, Mat. sb., 25:3 (1949), 321–346 | Zbl

[3] Chunikhin S. A., “Ob oslablenii uslovii v teoremakh tipa Silova”, DAN SSSR, 83:3 (1952), 663–665 | Zbl

[4] Chunikhin S. A., “O suschestvovanii i sopryazhennosti podgrupp u konechnoi gruppy”, Mat. sb., 33:1 (1953), 111–132 | Zbl

[5] Chunikhin S. A., Podgruppy konechnykh grupp, Nauka i tekhnika, Minsk, 1964 | MR | Zbl

[6] Wielandt H., “Zum Satz von Sylow”, Math. Z., 60:4 (1954), 407–408 | DOI | MR | Zbl

[7] Baer R., “Verstreute Untergruppen endlicher Gruppen”, Arch. Math., 9:1–2 (1958), 7–17 | DOI | MR | Zbl

[8] Shemetkov L. A., “$D$-stroenie konechnykh grupp”, Mat. sb., 67:3 (1965), 384–407 | Zbl

[9] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, M., 1978 | MR | Zbl

[10] Gross F., “On the existence of Hall Subgroups”, J. Algebra, 98:1 (1986), 1–13 | DOI | MR | Zbl

[11] Gross F., “On a conjecture of Philip Hall”, Proc. London Math. Soc. Ser. III, 52:3 (1986), 464–494 | DOI | MR | Zbl

[12] Gross F., “Conjugacy of odd order Hall subgroups”, Bull. London Math. Soc., 19:4 (1987), 311–319 | DOI | MR | Zbl

[13] Viland G., “Puti razvitiya strukturnoi teorii konechnykh grupp”, Mezhdunar. mat. kongress, Obzor. dokl. (Edinburg, 1958 g.), Fizmatgiz, M., 1962, 263–276

[14] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, 15-e izd., In-t mat. SO RAN, Novosibirsk, 2002

[15] Shemetkov L. A., “Novaya $D$-teorema v teorii konechnykh grupp”, DAN SSSR, 160:2 (1965), 290–293 | Zbl

[16] Shemetkov L. A., “Silovskie svoistva konechnykh grupp”, Mat. sb., 76:2 (1968), 271–287 | Zbl

[17] Shemetkov L. A., “O silovskikh svoistvakh konechnykh grupp”, DAN BSSR, 16:10 (1972), 881–883 | Zbl

[18] Hartley B. A., “A theorem of Sylow type for a finite groups”, Math. Z., 122:3 (1971), 223–226 | DOI | MR | Zbl

[19] Revin D. O., Vdovin E. P., “Hall subgroups of finite groups”, Contemporary Mathematics, 402, 2006, 229–265 | DOI | MR

[20] Vedernikov V. A., “Konechnye gruppy s khollovymi $\pi$-podgruppami”, Mat. sb., 203:3 (2012), 23–48 | DOI | MR | Zbl

[21] Vdovin E. P., Revin D. O., “Kriterii sopryazhennosti khollovykh podgrupp v konechnykh gruppakh”, Sib. mat. zhurn., 51:3 (2010), 506–516 | MR | Zbl

[22] Shemetkov L. A., “Obobscheniya teoremy Silova”, Sib. mat. zhurn., 44:6 (2003), 1425–1431 | MR | Zbl

[23] Kholl M., Teoriya grupp, IL, M., 1962