Sylow properties of finite groups
Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 40-47

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{F}$ be a non-empty class of finite groups, and $\pi$ be some set of prime numbers. An $S_\pi$-subgroup of group $G$ that belongs to the class $\mathfrak{F}$ is called an $S_\pi(\mathfrak{F})$-subgroup of $G.$ $C_\pi(\mathfrak{F})$ is the class of all groups $G$ that have $S_\pi(\mathfrak{F})$-subgroups, and any two $S_\pi(\mathfrak{F})$-subgroups of $G$ are conjugate in $G;$ $D_\pi(\mathfrak{F})$ is the class of all $C_\pi(\mathfrak{F})$-groups $G$ in which every $\mathfrak{F}_\pi$-subgroup is contained in some $S_\pi(\mathfrak{F})$-subgroup of $G.$ In this paper the new D-theorems are obtained, a number of properties of $D_\pi(\mathfrak{F})$-groups, and $C_\pi(\mathfrak{F})$-groups are established.
@article{TIMB_2013_21_1_a4,
     author = {V. A. Vedernikov},
     title = {Sylow properties of finite groups},
     journal = {Trudy Instituta matematiki},
     pages = {40--47},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a4/}
}
TY  - JOUR
AU  - V. A. Vedernikov
TI  - Sylow properties of finite groups
JO  - Trudy Instituta matematiki
PY  - 2013
SP  - 40
EP  - 47
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a4/
LA  - ru
ID  - TIMB_2013_21_1_a4
ER  - 
%0 Journal Article
%A V. A. Vedernikov
%T Sylow properties of finite groups
%J Trudy Instituta matematiki
%D 2013
%P 40-47
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a4/
%G ru
%F TIMB_2013_21_1_a4
V. A. Vedernikov. Sylow properties of finite groups. Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 40-47. http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a4/