Non-radicality of the class $E_\pi$-groups
Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 35-39

Voir la notice de l'article provenant de la source Math-Net.Ru

In the note it is proven that the class $E_\pi$ of all finite groups possessing $\pi$-Hall subgroups, for given set of primes $\pi,$ is not radical (i.e., the product of normal $E_\pi$-subgroups of a finite group is not necessary an $E_\pi$-group).
@article{TIMB_2013_21_1_a3,
     author = {E. P. Vdovin and D. O. Revin},
     title = {Non-radicality of the class $E_\pi$-groups},
     journal = {Trudy Instituta matematiki},
     pages = {35--39},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a3/}
}
TY  - JOUR
AU  - E. P. Vdovin
AU  - D. O. Revin
TI  - Non-radicality of the class $E_\pi$-groups
JO  - Trudy Instituta matematiki
PY  - 2013
SP  - 35
EP  - 39
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a3/
LA  - ru
ID  - TIMB_2013_21_1_a3
ER  - 
%0 Journal Article
%A E. P. Vdovin
%A D. O. Revin
%T Non-radicality of the class $E_\pi$-groups
%J Trudy Instituta matematiki
%D 2013
%P 35-39
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a3/
%G ru
%F TIMB_2013_21_1_a3
E. P. Vdovin; D. O. Revin. Non-radicality of the class $E_\pi$-groups. Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 35-39. http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a3/