Non-radicality of the class $E_\pi$-groups
Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 35-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the note it is proven that the class $E_\pi$ of all finite groups possessing $\pi$-Hall subgroups, for given set of primes $\pi,$ is not radical (i.e., the product of normal $E_\pi$-subgroups of a finite group is not necessary an $E_\pi$-group).
@article{TIMB_2013_21_1_a3,
     author = {E. P. Vdovin and D. O. Revin},
     title = {Non-radicality of the class $E_\pi$-groups},
     journal = {Trudy Instituta matematiki},
     pages = {35--39},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a3/}
}
TY  - JOUR
AU  - E. P. Vdovin
AU  - D. O. Revin
TI  - Non-radicality of the class $E_\pi$-groups
JO  - Trudy Instituta matematiki
PY  - 2013
SP  - 35
EP  - 39
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a3/
LA  - ru
ID  - TIMB_2013_21_1_a3
ER  - 
%0 Journal Article
%A E. P. Vdovin
%A D. O. Revin
%T Non-radicality of the class $E_\pi$-groups
%J Trudy Instituta matematiki
%D 2013
%P 35-39
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a3/
%G ru
%F TIMB_2013_21_1_a3
E. P. Vdovin; D. O. Revin. Non-radicality of the class $E_\pi$-groups. Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 35-39. http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a3/

[1] Hall P., “Theorems like Sylow`s”, Proc. London Math. Soc., 6:22 (1956), 286–304 | DOI | MR | Zbl

[2] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, M., 1978

[3] V. D. Mazurov, E. I. Khukhro (eds.), The Kourovka notebook. Unsolved problems in group theory, 17-th. ed., Russian Academy of Sciences Siberian Division, Institute of Mathematics, Novosibirsk, 2010 | Zbl

[4] Vedernikov V. A., “Podpryamye proizvedeniya konechnykh grupp s khollovymi $\pi$-podgruppami”, Mat. zametki, 59:2 (1996), 311–313 | DOI

[5] Revin D. O., Vdovin E. P., “Existence criterion for Hall subgroups of finite groups”, J. Group Theory, 14:1 (2011), 93–101 | DOI | MR | Zbl

[6] Vdovin E. P., Revin D. O., Shemetkov L. A., “Formatsii konechnykh $C_\pi$-grupp”, Algebra i analiz, 24:1 (2012), 40–52 | MR

[7] Revin D. O., Vdovin E. P., “Hall subgroups of finite groups”, Contemporary Mathematics, 402, 2006, 229–265 | DOI | MR

[8] Monakhov V. S., Vvedenie v teoriyu konechnykh grupp i ikh klassov, uchebnoe posobie, Vysheishaya shkola, Minsk, 2006

[9] Vdovin E. P., Revin D. O., “Teoremy silovskogo tipa”, UMN, 66:5(401) (2011), 3–46 | DOI | MR

[10] Zagurskii V. N., Vorobev N. T., “Klassy Fittinga s zadannymi svoistvami podgrupp Kholla”, Mat. zametki, 78:2 (2005), 234–240 | DOI | MR | Zbl

[11] Guo W., Li B., “On the Shemetkov problem for Fitting classes”, Beiträge Algebra Geom., 48:1 (2007), 281–289 | MR | Zbl

[12] Suzuki M., Group theory, v. II, Springer-Verlag, New York, 1986 | MR | Zbl

[13] Vdovin E. P., Revin D. O., “Kriterii sopryazhennosti khollovykh podgrupp v konechnykh gruppakh”, Sib. mat. zhurn., 51:3 (2010), 506–516 | MR | Zbl

[14] Gross F., “On a conjecture of Philip Hall”, Proc. London Math. Soc. Ser. III, 52:3 (1986), 464–494 | DOI | MR | Zbl

[15] Gross F., “Conjugacy of odd order Hall subgroups”, Bull. London Math. Soc., 19:4 (1987), 311–319 | DOI | MR | Zbl

[16] Revin D. O., “Khollovy $\pi$-podgruppy konechnykh grupp Shevalle, kharakteristika kotorykh prinadlezhit $\pi$”, Mat. tr., 2:1 (1999), 160–208 | MR | Zbl

[17] Revin D. O., Vdovin E. P., “On the number of classes of conjugate Hall subgroups in finite simple groups”, J. Algebra, 324:12 (2010), 3614–3652 | DOI | MR | Zbl

[18] Kleidman P. B., “The maximal subgroups of the finite $8$-dimensional orthogonal groups $P\Omega_8^+(q)$ and of their automorphism groups”, J. Algebra, 110:1 (1987), 173–242 | DOI | MR | Zbl