The Paley–Wiener–Gelfand tauberian theorem for semigroups with invariant measure
Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 88-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theorem is proved that generalizes the Gelfand generalization of the Paley–Wiener tauberian theorem to general abelian topological semigroups with invariant measure. Several corollaries of this theorem is given.
@article{TIMB_2013_21_1_a10,
     author = {A. R. Mirotin},
     title = {The {Paley{\textendash}Wiener{\textendash}Gelfand} tauberian theorem for semigroups with invariant measure},
     journal = {Trudy Instituta matematiki},
     pages = {88--97},
     year = {2013},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a10/}
}
TY  - JOUR
AU  - A. R. Mirotin
TI  - The Paley–Wiener–Gelfand tauberian theorem for semigroups with invariant measure
JO  - Trudy Instituta matematiki
PY  - 2013
SP  - 88
EP  - 97
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a10/
LA  - ru
ID  - TIMB_2013_21_1_a10
ER  - 
%0 Journal Article
%A A. R. Mirotin
%T The Paley–Wiener–Gelfand tauberian theorem for semigroups with invariant measure
%J Trudy Instituta matematiki
%D 2013
%P 88-97
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a10/
%G ru
%F TIMB_2013_21_1_a10
A. R. Mirotin. The Paley–Wiener–Gelfand tauberian theorem for semigroups with invariant measure. Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 88-97. http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a10/

[1] Korevaar J., “A Century of Complex Tauberian Theory”, Bull. Amer. Math. Soc., 39:4 (2002), 474–530 | DOI | MR

[2] Viner N., Peli R., Preobrazovanie Fure v kompleksnoi oblasti, Nauka, M., 1964

[3] Mirotin A. R., “Obschaya forma tauberovoi teoremy Peli-Vinera”, Analiticheskie metody analiza i differentsialnykh uravnenii, Tr. 4-i Mezhdunar. konf., V 3-kh t., v. 2, Matematicheskii analiz i prilozheniya, Minsk, 2006, 103–108 | MR

[4] Gelfand I. M., Raikov D. A., Shilov G. E., Kommutativnye normirovannye koltsa, Fizmatgiz, M., 1960

[5] Mirotin A. R., “Every Invariant Measure Semigroup Contains an Ideal which is Embeddable in a Group”, Semigroup Forum, 59:3 (1999), 354–361 | MR | Zbl

[6] Mirotin A. R., Garmonicheskii analiz na abelevykh polugruppakh, GGU, Gomel, 2008

[7] Mirotin A. R., “Invariantnye mery v kommutativnykh topologicheskikh polugruppakh”, Izv. vuzov. Matematika, 1988, no. 3, 75–77

[8] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969

[9] Hewitt E., Williamson J. H., “Note on absolutely convergent Dirichlet series”, Proc. Amer. Math. Soc., 8:4 (1957), 863–868 | DOI | MR | Zbl

[10] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, v. 1, Nauka, M., 1975

[11] Leng S., Algebraicheskie chisla, Mir, M., 1966