Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2013_21_1_a10, author = {A. R. Mirotin}, title = {The {Paley--Wiener--Gelfand} tauberian theorem for semigroups with invariant measure}, journal = {Trudy Instituta matematiki}, pages = {88--97}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a10/} }
A. R. Mirotin. The Paley--Wiener--Gelfand tauberian theorem for semigroups with invariant measure. Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 88-97. http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a10/
[1] Korevaar J., “A Century of Complex Tauberian Theory”, Bull. Amer. Math. Soc., 39:4 (2002), 474–530 | DOI | MR
[2] Viner N., Peli R., Preobrazovanie Fure v kompleksnoi oblasti, Nauka, M., 1964
[3] Mirotin A. R., “Obschaya forma tauberovoi teoremy Peli-Vinera”, Analiticheskie metody analiza i differentsialnykh uravnenii, Tr. 4-i Mezhdunar. konf., V 3-kh t., v. 2, Matematicheskii analiz i prilozheniya, Minsk, 2006, 103–108 | MR
[4] Gelfand I. M., Raikov D. A., Shilov G. E., Kommutativnye normirovannye koltsa, Fizmatgiz, M., 1960
[5] Mirotin A. R., “Every Invariant Measure Semigroup Contains an Ideal which is Embeddable in a Group”, Semigroup Forum, 59:3 (1999), 354–361 | MR | Zbl
[6] Mirotin A. R., Garmonicheskii analiz na abelevykh polugruppakh, GGU, Gomel, 2008
[7] Mirotin A. R., “Invariantnye mery v kommutativnykh topologicheskikh polugruppakh”, Izv. vuzov. Matematika, 1988, no. 3, 75–77
[8] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969
[9] Hewitt E., Williamson J. H., “Note on absolutely convergent Dirichlet series”, Proc. Amer. Math. Soc., 8:4 (1957), 863–868 | DOI | MR | Zbl
[10] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, v. 1, Nauka, M., 1975
[11] Leng S., Algebraicheskie chisla, Mir, M., 1966