The Paley--Wiener--Gelfand tauberian theorem for semigroups with invariant measure
Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 88-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theorem is proved that generalizes the Gelfand generalization of the Paley–Wiener tauberian theorem to general abelian topological semigroups with invariant measure. Several corollaries of this theorem is given.
@article{TIMB_2013_21_1_a10,
     author = {A. R. Mirotin},
     title = {The {Paley--Wiener--Gelfand} tauberian theorem for semigroups with invariant measure},
     journal = {Trudy Instituta matematiki},
     pages = {88--97},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a10/}
}
TY  - JOUR
AU  - A. R. Mirotin
TI  - The Paley--Wiener--Gelfand tauberian theorem for semigroups with invariant measure
JO  - Trudy Instituta matematiki
PY  - 2013
SP  - 88
EP  - 97
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a10/
LA  - ru
ID  - TIMB_2013_21_1_a10
ER  - 
%0 Journal Article
%A A. R. Mirotin
%T The Paley--Wiener--Gelfand tauberian theorem for semigroups with invariant measure
%J Trudy Instituta matematiki
%D 2013
%P 88-97
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a10/
%G ru
%F TIMB_2013_21_1_a10
A. R. Mirotin. The Paley--Wiener--Gelfand tauberian theorem for semigroups with invariant measure. Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 88-97. http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a10/

[1] Korevaar J., “A Century of Complex Tauberian Theory”, Bull. Amer. Math. Soc., 39:4 (2002), 474–530 | DOI | MR

[2] Viner N., Peli R., Preobrazovanie Fure v kompleksnoi oblasti, Nauka, M., 1964

[3] Mirotin A. R., “Obschaya forma tauberovoi teoremy Peli-Vinera”, Analiticheskie metody analiza i differentsialnykh uravnenii, Tr. 4-i Mezhdunar. konf., V 3-kh t., v. 2, Matematicheskii analiz i prilozheniya, Minsk, 2006, 103–108 | MR

[4] Gelfand I. M., Raikov D. A., Shilov G. E., Kommutativnye normirovannye koltsa, Fizmatgiz, M., 1960

[5] Mirotin A. R., “Every Invariant Measure Semigroup Contains an Ideal which is Embeddable in a Group”, Semigroup Forum, 59:3 (1999), 354–361 | MR | Zbl

[6] Mirotin A. R., Garmonicheskii analiz na abelevykh polugruppakh, GGU, Gomel, 2008

[7] Mirotin A. R., “Invariantnye mery v kommutativnykh topologicheskikh polugruppakh”, Izv. vuzov. Matematika, 1988, no. 3, 75–77

[8] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969

[9] Hewitt E., Williamson J. H., “Note on absolutely convergent Dirichlet series”, Proc. Amer. Math. Soc., 8:4 (1957), 863–868 | DOI | MR | Zbl

[10] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, v. 1, Nauka, M., 1975

[11] Leng S., Algebraicheskie chisla, Mir, M., 1966