Methods of forest fires computer modelling
Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

Adapted by authors mathematical model of ground forest fire propagation is considered. Questions of mathematical correctness of accepted boundary value problem are examined. The rationale of authors' generalization of classical semi-empirical Rothermel's model is also provided. Numerical experiment results analysis, in particular, dependence of fire rate of spread from some of the problem's parameters are discussed.
@article{TIMB_2013_21_1_a0,
     author = {D. V. Barovik and V. I. Korzyuk and V. B. Taranchuk},
     title = {Methods of forest fires computer modelling},
     journal = {Trudy Instituta matematiki},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a0/}
}
TY  - JOUR
AU  - D. V. Barovik
AU  - V. I. Korzyuk
AU  - V. B. Taranchuk
TI  - Methods of forest fires computer modelling
JO  - Trudy Instituta matematiki
PY  - 2013
SP  - 3
EP  - 14
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a0/
LA  - ru
ID  - TIMB_2013_21_1_a0
ER  - 
%0 Journal Article
%A D. V. Barovik
%A V. I. Korzyuk
%A V. B. Taranchuk
%T Methods of forest fires computer modelling
%J Trudy Instituta matematiki
%D 2013
%P 3-14
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a0/
%G ru
%F TIMB_2013_21_1_a0
D. V. Barovik; V. I. Korzyuk; V. B. Taranchuk. Methods of forest fires computer modelling. Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a0/

[1] Grishin A. M., Matematicheskoe modelirovanie lesnykh pozharov i novye sposoby borby s nimi, Nauka, Novosibirsk, 1992

[2] Pastor E. et al., “Mathematical models and calculation systems for the study of wildland fire behaviour”, Progress in Energy and Combustion Science, 29 (2003), 139–153 | DOI

[3] McArthur A. G., Weather and grassland fire behaviour, Leaflet No 100, Forestry Research Institute, Commonwealth of Australia, 1966

[4] Rothermel R. C., A Mathematical model for Predicting Fire Spread in Wildland Fuels, Res. Pap. INT-115, USDA Forest Service, 1972

[5] Barovik D. V., Taranchuk V. B., “Sostoyanie problemy i rezultaty kompyuternogo prognozirovaniya rasprostraneniya lesnykh pozharov”, Vestnik BGU. Ser. 1. Fizika. Matematika. Informatika, 2011, no. 3, 78–84

[6] Barovik D. V., Taranchuk V. B., “O razvitii metodiki Rotermela i realizatsii dvumernoi kompyuternoi modeli prognoza rasprostraneniya lesnykh pozharov”, Vesnik Vitsebskaga dzyarzh. un-ta, 2011, no. 6 (66), 5–11

[7] Andrews P. L., BehavePlus fire modeling system, version 5.0: Variables, Gen. Tech. Rep. RMRS-GTR-213WWW Revised, USDA Forest Service, 2009

[8] Finney M. A., FARSITE: Fire Area Simulator — model development and evaluation, Res. Pap. RMRS-RP-4, USDA Forest Service, 2004

[9] Ottmar R. D. et al., “An overview of the Fuel Characteristic Classification System — Qualifying, classifying, and creating fuelbeds for resource planning”, Can. J. For. Res., 2007, no. 37, 2383–2393 | DOI

[10] The Fuel Characteristic Classification System, , US Forest Service http://www.fs.fed.us/pnw/fera/fccs/index.shtml

[11] Scott J. H., Burgan R. E., Standard fire behaviour fuel models: a comprehensive set for use with Rothermel's surface fire spread model, Gen. Tech. Rep. RMRS-GTR-153, USDA Forest Service, 2005

[12] Sandenberg D. V. et al., “Reformulation of Rothermel's wildland fire behavior model for heterogeneous fuelbeds”, Can. J. For. Res., 2007, no. 37, 2438–2455 | DOI

[13] Nelson R. M., Adkins C. W., “Flame characteristics of wind-driven surface fires”, Can. J. For. Res., 1986, no. 16, 1293–1300 | DOI

[14] McCaw W. L., Predicting fire spread in Western Australian mallee-heath shrubland, Ph. D. thesis, University of New South Wales, Australia, 1997

[15] Catchpole W. R. et al., “Rate of spread of free-burning fires in woody fuels in a wind tunnel”, Combust. Sci. Technol., 1998, no. 131, 1–37 | DOI

[16] Pagni T. J., Peterson T. G., “Flame spread through porous fuels”, Proceedings of the 14th (International) Symposium on Combustion, The Combustion Institute, Pittsburgh, Penn., 1973, 1099–1107 | DOI

[17] Barovik D. V., Korzyuk V. I., Taranchuk V. B., “Metodicheskie i algoritmicheskie osnovy programmnogo kompleksa “Raschet i vizualizatsiya dinamiki lesnogo pozhara””, Chrezvychainye situatsii: preduprezhdenie i likvidatsiya, 2011, no. 2 (30), 22–33

[18] Barovik D. V., Taranchuk V. B., “Adaptatsiya modeli Rotermela dlya realizatsii v programmnom komplekse prognoza rasprostraneniya lesnykh pozharov”, Nauchnyi internet zhurn. Tekhnologii tekhnosfernoi bezopasnosti, 2011, no. 6 (40) http://ipb.mos.ru/ttb/2011-6/2011-6.html

[19] Barovik D. V., Taranchuk V. B., “Mathematical Modelling of Running Crown Forest Fires”, Mathematical Modelling and Analysis, 15:2 (2010), 161–174 | DOI | MR | Zbl

[20] Barovik D. V., Taranchuk V. B., “Ob osobennostyakh adaptatsii matematicheskikh modelei vershinnykh verkhovykh lesnykh pozharov”, Vestnik BGU. Ser. 1. Fizika. Matematika. Informatika, 2010, no. 1, 138–143

[21] Barovik D. V., Taranchuk V. B., “Chislennaya realizatsiya matematicheskoi modeli verkhovykh lesnykh pozharov”, Vestsi BDPU. Ser. 3. Fizika. Matematika. Informatika, 2010, no. 2, 40–44 | MR

[22] Barovik D. V., “Bazy dannykh rezultatov chislennogo modelirovaniya (na primere zadachi rasprostraneniya lesnykh pozharov)”, Vestnik BGU. Ser. 1. Fizika. Matematika. Informatika, 2010, no. 2, 170–174 | MR