Full cycle extendability of locally connected $K_{1,4}$-restricted graphs
Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 36-50

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we show that a connected locally connected $K_{1,4}$-restricted graph on at least three vertices is either fully cycle extendable or isomorphic to one of the five exceptional (non-Hamiltonian) graphs. This result generalizes several known results on the existence of Hamiltonian cycles in locally connected graphs. We also propose a polynomial time algorithm for finding a Hamiltonian cycle in graphs under consideration.
@article{TIMB_2012_20_2_a4,
     author = {P. A. Irzhavski and Yu. L. Orlovich},
     title = {Full cycle extendability of locally connected $K_{1,4}$-restricted graphs},
     journal = {Trudy Instituta matematiki},
     pages = {36--50},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a4/}
}
TY  - JOUR
AU  - P. A. Irzhavski
AU  - Yu. L. Orlovich
TI  - Full cycle extendability of locally connected $K_{1,4}$-restricted graphs
JO  - Trudy Instituta matematiki
PY  - 2012
SP  - 36
EP  - 50
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a4/
LA  - ru
ID  - TIMB_2012_20_2_a4
ER  - 
%0 Journal Article
%A P. A. Irzhavski
%A Yu. L. Orlovich
%T Full cycle extendability of locally connected $K_{1,4}$-restricted graphs
%J Trudy Instituta matematiki
%D 2012
%P 36-50
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a4/
%G ru
%F TIMB_2012_20_2_a4
P. A. Irzhavski; Yu. L. Orlovich. Full cycle extendability of locally connected $K_{1,4}$-restricted graphs. Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 36-50. http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a4/