Full cycle extendability of locally connected $K_{1,4}$-restricted graphs
Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 36-50
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we show that a connected locally connected $K_{1,4}$-restricted graph on at least three vertices is either fully cycle extendable or isomorphic to one of the five exceptional (non-Hamiltonian) graphs. This result generalizes several known results on the existence of Hamiltonian cycles in locally connected graphs. We also propose a polynomial time algorithm for finding a Hamiltonian cycle in graphs under consideration.
@article{TIMB_2012_20_2_a4,
author = {P. A. Irzhavski and Yu. L. Orlovich},
title = {Full cycle extendability of locally connected $K_{1,4}$-restricted graphs},
journal = {Trudy Instituta matematiki},
pages = {36--50},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a4/}
}
TY - JOUR
AU - P. A. Irzhavski
AU - Yu. L. Orlovich
TI - Full cycle extendability of locally connected $K_{1,4}$-restricted graphs
JO - Trudy Instituta matematiki
PY - 2012
SP - 36
EP - 50
VL - 20
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a4/
LA - ru
ID - TIMB_2012_20_2_a4
ER -
P. A. Irzhavski; Yu. L. Orlovich. Full cycle extendability of locally connected $K_{1,4}$-restricted graphs. Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 36-50. http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a4/