On irreducible linear groups of prime-power degree
Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 103-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma=AG$ be a finite group, $G\triangleleft\Gamma$, $(|A|,|G|)=1$, $C_G(a)=C_G(A)$ for each element $a\in A^{\#}$, and let the subgroup $A$ have a nonprimary odd order and be not normal in $\Gamma$. Assume that $\chi$ is an irreducible complex character of $G$ that is invariant for at least one nonunity element of $A$ and $\chi(1)2|A|$. Then it is proved that $G=O_q(G)C_G(A)$ and $\chi(1)$ is a power of a prime $q$. Furthermore, if $G$ is not solvable, then $\chi(1)=2(|A|-1)$ and $C_G(A)/Z(\Gamma)\cong PSL(2,5)$.
@article{TIMB_2012_20_2_a10,
     author = {A. A. Yadchenko},
     title = {On irreducible linear groups of prime-power degree},
     journal = {Trudy Instituta matematiki},
     pages = {103--116},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a10/}
}
TY  - JOUR
AU  - A. A. Yadchenko
TI  - On irreducible linear groups of prime-power degree
JO  - Trudy Instituta matematiki
PY  - 2012
SP  - 103
EP  - 116
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a10/
LA  - ru
ID  - TIMB_2012_20_2_a10
ER  - 
%0 Journal Article
%A A. A. Yadchenko
%T On irreducible linear groups of prime-power degree
%J Trudy Instituta matematiki
%D 2012
%P 103-116
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a10/
%G ru
%F TIMB_2012_20_2_a10
A. A. Yadchenko. On irreducible linear groups of prime-power degree. Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 103-116. http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a10/

[1] Yadchenko A. A., “O $\Pi$-razreshimykh neprivodimykh lineinykh gruppakh s khollovoi $TI$-podgruppoi nechetnogo poryadka, I”, Tr. In-ta matematiki NAN Belarusi, 16:2 (2008), 118–130 | Zbl

[2] Yadchenko A. A., “O $\Pi$-razreshimykh neprivodimykh lineinykh gruppakh s khollovoi $TI$-podgruppoi nechetnogo poryadka, II”, Tr. In-ta matematiki NAN Belarusi, 17:2 (2009), 94–104

[3] Yadchenko A. A., “O $\Pi$-razreshimykh neprivodimykh lineinykh gruppakh s khollovoi $TI$-podgruppoi nechetnogo poryadka, III”, Tr. In-ta matematiki NAN Belarusi, 18:2 (2010), 99–114 | Zbl

[4] Isaacs I. M., “Complex $p$-solvable linear groups”, J. Algebra, 1973 | MR

[5] Romanovskii A. V., Yadchenko A. A., “O silovskikh podgruppakh lineinykh grupp”, Mat. sb., 137 (179):4 (12) (1988), 568–573 | MR

[6] Gorenstein D., Finite groups, New York, 1968 | MR | Zbl

[7] Isaacs I. M., Character theory of finite groups, New York, 1976 | MR

[8] Yadchenko A. A., “Ob avtomorfizmakh i normalnykh khollovskikh podgruppakh lineinykh grupp”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2007, 349–54

[9] Starostin A. I., “O gruppakh Frobeniusa”, Ukr. mat. zhurn., 23:3 (1971), 629–639 | MR | Zbl

[10] Glauberman G., “Correspodences of characters for relatively prime operator groups”, Canad. J. Math., 1968, no. 20, 1465–1488 | DOI | MR | Zbl

[11] Yadchenko A. A., “O konechnykh $\pi$-razreshimykh lineinykh gruppakh”, Arifmeticheskoe i podgruppovoe stroenie konechnykh grupp, Minsk, 1986, 181–207 | MR | Zbl

[12] Yadchenko A. A., “O spektrakh $p$-elementov konechnykh kompleksnykh $p$-razreshimykh lineinykh grupp”, Mat. zametki, 50:3 (1991), 143–151 | MR | Zbl

[13] Bobr V. V., “O razreshimosti konechnykh neprivodimykh lineinykh grupp s khollovskoi TI-podgruppoi”, Mat. zametki, 73:4 (2003), 494–501 | MR | Zbl

[14] Chunikhin S. A., Podgruppy konechnykh grupp, Minsk, 1964 | Zbl

[15] Isaacs I. M., Robinson G. R., “Linear constituents of certain character restrictions”, Proc. Amer. Math. Soc., 126:9 (1998), 2615–2617 | DOI | MR | Zbl

[16] Yadchenko A. A., “O normalnykh khollovskikh podgruppakh $\Pi$-obosoblennykh lineinykh grupp”, Vestsi NAN Belarusi, 2005, no. 1, 35–39 | MR

[17] Yadchenko A. A., Zayats P. I., “O faktorizatsii nekotorykh neprivodimykh lineinykh grupp”, Dokl. NAN Belarusi, 54:4 (2010), 28–35 | MR