On irreducible linear groups of prime-power degree
Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 103-116
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Gamma=AG$ be a finite group, $G\triangleleft\Gamma$, $(|A|,|G|)=1$, $C_G(a)=C_G(A)$ for each element $a\in A^{\#}$, and let the subgroup $A$ have a nonprimary odd order and be not normal in $\Gamma$. Assume that $\chi$ is an irreducible complex character of $G$ that is invariant for at least one nonunity element of $A$ and $\chi(1)2|A|$. Then it is proved that $G=O_q(G)C_G(A)$ and $\chi(1)$ is a power of a prime $q$. Furthermore, if $G$ is not solvable, then $\chi(1)=2(|A|-1)$ and $C_G(A)/Z(\Gamma)\cong PSL(2,5)$.
@article{TIMB_2012_20_2_a10,
author = {A. A. Yadchenko},
title = {On irreducible linear groups of prime-power degree},
journal = {Trudy Instituta matematiki},
pages = {103--116},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a10/}
}
A. A. Yadchenko. On irreducible linear groups of prime-power degree. Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 103-116. http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a10/