On solvable groups whose Sylow subgroups are either abelian or extraspecial
Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

A $p$-group $G$ is called extraspecial if its derived subgroup, center and Frattini subgroup are groups of order $p.$ We consider the solvable groups whose Sylow subgroups are either abelian or extraspecial. It is proved that derived length is at most $2\cdot|\pi(G)|$ and nilpotent length is at most $2+|\pi(G)|$.
@article{TIMB_2012_20_2_a0,
     author = {D. V. Gritsuk and V. S. Monakhov},
     title = {On solvable groups whose {Sylow} subgroups are either abelian or extraspecial},
     journal = {Trudy Instituta matematiki},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a0/}
}
TY  - JOUR
AU  - D. V. Gritsuk
AU  - V. S. Monakhov
TI  - On solvable groups whose Sylow subgroups are either abelian or extraspecial
JO  - Trudy Instituta matematiki
PY  - 2012
SP  - 3
EP  - 9
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a0/
LA  - ru
ID  - TIMB_2012_20_2_a0
ER  - 
%0 Journal Article
%A D. V. Gritsuk
%A V. S. Monakhov
%T On solvable groups whose Sylow subgroups are either abelian or extraspecial
%J Trudy Instituta matematiki
%D 2012
%P 3-9
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a0/
%G ru
%F TIMB_2012_20_2_a0
D. V. Gritsuk; V. S. Monakhov. On solvable groups whose Sylow subgroups are either abelian or extraspecial. Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 3-9. http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a0/

[1] Monakhov V. S., Vvedenie v teoriyu konechnykh grupp i ikh klassov, Minsk, 2006

[2] Huppert B., Endliche Gruppen, v. I, Berlin–Heidelberg–New York, 1967 | Zbl

[3] Monakhov V. S., Shpyrko O. A., “O nilpotentnoi $\pi$-dline konechnoi $\pi$-razreshimoi gruppy”, Diskretnaya matematika, 13:3 (2001), 145–152 | DOI | MR | Zbl

[4] Hall P., Higman G., “The $p$-lengh of a $p$-soluble groups and reduction theorems for Burnside's problem”, Proc. London Math. Soc., 3:7 (1956), 1–42 | DOI | MR | Zbl

[5] Shemetkov L. A., Formatsii konechnykh grupp, M., 1978 | MR

[6] Kurzweil H., Stellmacher B., The theory of finite groups: an introduction, New York–Berlin–Heidelberg, 2004 | MR

[7] Ballester-Bolinches A., Estaban-Romero R., Asaad M., Products finite groups, De Gruyter Expositions in Mathematics, 2010 | DOI

[8] Gritsuk D. V., Monakhov V. S., Shpyrko O. A., “O proizvodnoi $\pi$-dline $\pi$-razreshimoi gruppy”, Vestnik BGU. Ser. 1, 2012, no. 3, 90–95

[9] Shemetkov L. A., Yi Xiaolan, “On the $p$-length of a finite $p$-solvable groups”, Tr. In-ta matematiki NAN Belarusi, 16:1 (2008), 93–96 | MR

[10] Sistema kompyuternoi algebry GAP 4.4.12, 2009 http://www.gap-system.org/ukrgap/gapbook/manual.pdf