@article{TIMB_2012_20_2_a0,
author = {D. V. Gritsuk and V. S. Monakhov},
title = {On solvable groups whose {Sylow} subgroups are either abelian or extraspecial},
journal = {Trudy Instituta matematiki},
pages = {3--9},
year = {2012},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a0/}
}
D. V. Gritsuk; V. S. Monakhov. On solvable groups whose Sylow subgroups are either abelian or extraspecial. Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 3-9. http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a0/
[1] Monakhov V. S., Vvedenie v teoriyu konechnykh grupp i ikh klassov, Minsk, 2006
[2] Huppert B., Endliche Gruppen, v. I, Berlin–Heidelberg–New York, 1967 | Zbl
[3] Monakhov V. S., Shpyrko O. A., “O nilpotentnoi $\pi$-dline konechnoi $\pi$-razreshimoi gruppy”, Diskretnaya matematika, 13:3 (2001), 145–152 | DOI | MR | Zbl
[4] Hall P., Higman G., “The $p$-lengh of a $p$-soluble groups and reduction theorems for Burnside's problem”, Proc. London Math. Soc., 3:7 (1956), 1–42 | DOI | MR | Zbl
[5] Shemetkov L. A., Formatsii konechnykh grupp, M., 1978 | MR
[6] Kurzweil H., Stellmacher B., The theory of finite groups: an introduction, New York–Berlin–Heidelberg, 2004 | MR
[7] Ballester-Bolinches A., Estaban-Romero R., Asaad M., Products finite groups, De Gruyter Expositions in Mathematics, 2010 | DOI
[8] Gritsuk D. V., Monakhov V. S., Shpyrko O. A., “O proizvodnoi $\pi$-dline $\pi$-razreshimoi gruppy”, Vestnik BGU. Ser. 1, 2012, no. 3, 90–95
[9] Shemetkov L. A., Yi Xiaolan, “On the $p$-length of a finite $p$-solvable groups”, Tr. In-ta matematiki NAN Belarusi, 16:1 (2008), 93–96 | MR
[10] Sistema kompyuternoi algebry GAP 4.4.12, 2009 http://www.gap-system.org/ukrgap/gapbook/manual.pdf