Classification of symbols of three-dimensional vector distributions of infinite type
Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 83-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider non-degenerate fundamental Lie algebras $\mathfrak{m}$ of infinite type over an arbitrary field of zero characteristic that can be uniquely represented as special extensions $0\to\mathfrak{a}\to\mathfrak{m}\to\mathfrak{n}\to0$, where all homogeneous components of $\mathfrak{a}$ are of dimension one. We provide explicit description of all such extensions in cases when $\mathfrak{n}$ is either a contact Lie algebra of dimension $\ge3$ or five-dimensional nilpotent Lie algebra of type $G_2$. In particular, get all fundamental Lie algebras $\mathfrak{m}$ of infinite type with $\dim\mathfrak{m}_{-1}=3$ and $\dim\mathfrak{n}\le5$. This covers all such Lie algebras $\mathfrak{m}$ that $\dim\mathfrak{m}\le 7$.
@article{TIMB_2012_20_1_a8,
     author = {O. Yu. Radko},
     title = {Classification of symbols of three-dimensional vector distributions of infinite type},
     journal = {Trudy Instituta matematiki},
     pages = {83--95},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a8/}
}
TY  - JOUR
AU  - O. Yu. Radko
TI  - Classification of symbols of three-dimensional vector distributions of infinite type
JO  - Trudy Instituta matematiki
PY  - 2012
SP  - 83
EP  - 95
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a8/
LA  - ru
ID  - TIMB_2012_20_1_a8
ER  - 
%0 Journal Article
%A O. Yu. Radko
%T Classification of symbols of three-dimensional vector distributions of infinite type
%J Trudy Instituta matematiki
%D 2012
%P 83-95
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a8/
%G ru
%F TIMB_2012_20_1_a8
O. Yu. Radko. Classification of symbols of three-dimensional vector distributions of infinite type. Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 83-95. http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a8/

[1] Tanaka N., “On differential systems, graded Lie algebras, and pseudo-groups”, J. Math. Kyoto Univ., 10 (1970), 1–82 | MR | Zbl

[2] Tanaka N., “On the equivalence problems associated with simple graded Lie algebras”, Hokkaido Math. J., 8 (1979), 23–84 | MR | Zbl

[3] Cartan É., “Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre”, Ann. École Norm. Sup., 27 (1910), 109–122 | MR

[4] Vershik A. M., Gershkovich V. Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhniki. Ser. Sovrem. probl. mat. Fundam. napravleniya VINITI, 16, VINITI, M., 1987, 5–85 | MR

[5] Agrachev A. A., Sachkov Yu. L., Geometricheskaya teoriya upravleniya, M., 2005

[6] Kuzmich O., “Graded nilpotent Lie algebras in low dimensions”, Lobachevskii J. Math., 3 (1999), 147–184 | MR | Zbl

[7] Doubrov B., Radko O., “Graded nilpotent Lie algebras of infinite type”, J. of Lie Theory, 20 (2010), 525–541 | MR | Zbl

[8] Radko O. Yu., “Malomernye raspredeleniya beskonechnogo tipa”, Tr. In-ta matematiki NAN Belarusi, 19:2 (2011), 91–102 | Zbl