Classification of symbols of three-dimensional vector distributions of infinite type
Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 83-95
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider non-degenerate fundamental Lie algebras $\mathfrak{m}$ of infinite type over an arbitrary field of zero characteristic that can be uniquely represented as special extensions $0\to\mathfrak{a}\to\mathfrak{m}\to\mathfrak{n}\to0$, where all homogeneous components of $\mathfrak{a}$ are of dimension one. We provide explicit description of all such extensions in cases when $\mathfrak{n}$ is either a contact Lie algebra of dimension $\ge3$ or five-dimensional nilpotent Lie algebra of type $G_2$. In particular, get all fundamental Lie algebras $\mathfrak{m}$ of infinite type with $\dim\mathfrak{m}_{-1}=3$ and $\dim\mathfrak{n}\le5$. This covers all such Lie algebras $\mathfrak{m}$ that $\dim\mathfrak{m}\le 7$.
@article{TIMB_2012_20_1_a8,
author = {O. Yu. Radko},
title = {Classification of symbols of three-dimensional vector distributions of infinite type},
journal = {Trudy Instituta matematiki},
pages = {83--95},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a8/}
}
O. Yu. Radko. Classification of symbols of three-dimensional vector distributions of infinite type. Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 83-95. http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a8/