Relaxation of the famous $NP$-complete polar graphs recognition problem leading to the fast polynomial-time algorithm
Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 74-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

Considered the class of polar graphs and some of its subclasses. Graph $G=(V,E)$ is called polar if there exist a partition $VG=A\cup B$ of its vertex set such that all connected components of subgraphs $G(B)$ and $\overline{G(A)}$ are cliques. It is known that the polar graph recognition problem is $NP$-complete. In this paper the relaxation of the mentioned problem leading to the fast polynomial-time algorithm is proposed.
@article{TIMB_2012_20_1_a7,
     author = {R. A. Petrovich},
     title = {Relaxation of the famous $NP$-complete polar graphs recognition problem leading to the fast polynomial-time algorithm},
     journal = {Trudy Instituta matematiki},
     pages = {74--82},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a7/}
}
TY  - JOUR
AU  - R. A. Petrovich
TI  - Relaxation of the famous $NP$-complete polar graphs recognition problem leading to the fast polynomial-time algorithm
JO  - Trudy Instituta matematiki
PY  - 2012
SP  - 74
EP  - 82
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a7/
LA  - ru
ID  - TIMB_2012_20_1_a7
ER  - 
%0 Journal Article
%A R. A. Petrovich
%T Relaxation of the famous $NP$-complete polar graphs recognition problem leading to the fast polynomial-time algorithm
%J Trudy Instituta matematiki
%D 2012
%P 74-82
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a7/
%G ru
%F TIMB_2012_20_1_a7
R. A. Petrovich. Relaxation of the famous $NP$-complete polar graphs recognition problem leading to the fast polynomial-time algorithm. Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 74-82. http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a7/

[1] Emelichev V. A., Melnikov O. I., Sarvanov V. I., Tyshkevich R. I., Lektsii po teorii grafov, M., 1990, 384 pp. | MR

[2] Tyshkevich R. I., Chernyak A. A., “Polyarnye grafy”, Kibernetika, 1985, 68–70

[3] Tyshkevich R. I., Chernyak A. A., “Algoritmy kanonicheskogo razlozheniya grafa i raspoznavaniya polyarnosti”, Vestsi AN BSSR. Ser. fiz-mat. navuk, 1985, no. 6, 16–23 | MR | Zbl

[4] Ekim T., Mahadev N. V. R., Werra D., “Polar cographs”, Discrete Applied Mathematics, 156:10 (28 May 2008), 1652–1660 | DOI | MR | Zbl

[5] Melnikov O. I., Kozhich P. P., “Algoritmy raspoznavaniya polyarnosti grafa s ogranichennymi parametrami”, Vestsi AN BSSR. Ser. fiz-mat. navuk, 1985, no. 6, 50–54 | MR

[6] Mahadev V., Peled U. N., Threshold Graphs and Related Topics, Elsevier, 1995 | Zbl

[7] Alekseev V. E., Talanov V. A., Grafy. Modeli vychislenii. Struktury dannykh, Ucheb. posobie, Izd-vo NNGU, Nizhnii Novgorod, 2005, 307 pp.