Relaxation of the famous $NP$-complete polar graphs recognition problem leading to the fast polynomial-time algorithm
Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 74-82
Voir la notice de l'article provenant de la source Math-Net.Ru
Considered the class of polar graphs and some of its subclasses. Graph $G=(V,E)$ is called polar if there
exist a partition $VG=A\cup B$ of its vertex set such that all connected components of subgraphs $G(B)$ and
$\overline{G(A)}$ are cliques.
It is known that the polar graph recognition problem is $NP$-complete.
In this paper the relaxation of the mentioned problem leading to the fast polynomial-time algorithm is
proposed.
@article{TIMB_2012_20_1_a7,
author = {R. A. Petrovich},
title = {Relaxation of the famous $NP$-complete polar graphs recognition problem leading to the fast polynomial-time algorithm},
journal = {Trudy Instituta matematiki},
pages = {74--82},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a7/}
}
TY - JOUR AU - R. A. Petrovich TI - Relaxation of the famous $NP$-complete polar graphs recognition problem leading to the fast polynomial-time algorithm JO - Trudy Instituta matematiki PY - 2012 SP - 74 EP - 82 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a7/ LA - ru ID - TIMB_2012_20_1_a7 ER -
%0 Journal Article %A R. A. Petrovich %T Relaxation of the famous $NP$-complete polar graphs recognition problem leading to the fast polynomial-time algorithm %J Trudy Instituta matematiki %D 2012 %P 74-82 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a7/ %G ru %F TIMB_2012_20_1_a7
R. A. Petrovich. Relaxation of the famous $NP$-complete polar graphs recognition problem leading to the fast polynomial-time algorithm. Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 74-82. http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a7/