Computation of the biclique partition number for graphs with specific blocks
Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 60-73

Voir la notice de l'article provenant de la source Math-Net.Ru

The biclique partition number of an undirected graph $G=(V,E)$ is the smallest number of bicliques (complete bipartite subgraphs) of the graph $G$ needed to partition the edge set $E.$ We present an efficient algorithm for finding the biclique partition number of a connected graph whose blocks are either complete graphs or complete bipartite graphs or cycles.
@article{TIMB_2012_20_1_a6,
     author = {V. V. Lepin and O. I. Duginov},
     title = {Computation of the biclique partition number for graphs with specific blocks},
     journal = {Trudy Instituta matematiki},
     pages = {60--73},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a6/}
}
TY  - JOUR
AU  - V. V. Lepin
AU  - O. I. Duginov
TI  - Computation of the biclique partition number for graphs with specific blocks
JO  - Trudy Instituta matematiki
PY  - 2012
SP  - 60
EP  - 73
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a6/
LA  - ru
ID  - TIMB_2012_20_1_a6
ER  - 
%0 Journal Article
%A V. V. Lepin
%A O. I. Duginov
%T Computation of the biclique partition number for graphs with specific blocks
%J Trudy Instituta matematiki
%D 2012
%P 60-73
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a6/
%G ru
%F TIMB_2012_20_1_a6
V. V. Lepin; O. I. Duginov. Computation of the biclique partition number for graphs with specific blocks. Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 60-73. http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a6/