Computation of the biclique partition number for graphs with specific blocks
Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 60-73
Voir la notice de l'article provenant de la source Math-Net.Ru
The biclique partition number of an undirected graph $G=(V,E)$ is the smallest number of bicliques (complete
bipartite subgraphs) of the graph $G$ needed to partition the edge set $E.$ We present an efficient algorithm
for finding the biclique partition number of a connected graph whose blocks are either complete graphs or
complete bipartite graphs or cycles.
@article{TIMB_2012_20_1_a6,
author = {V. V. Lepin and O. I. Duginov},
title = {Computation of the biclique partition number for graphs with specific blocks},
journal = {Trudy Instituta matematiki},
pages = {60--73},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a6/}
}
TY - JOUR AU - V. V. Lepin AU - O. I. Duginov TI - Computation of the biclique partition number for graphs with specific blocks JO - Trudy Instituta matematiki PY - 2012 SP - 60 EP - 73 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a6/ LA - ru ID - TIMB_2012_20_1_a6 ER -
V. V. Lepin; O. I. Duginov. Computation of the biclique partition number for graphs with specific blocks. Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 60-73. http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a6/