Computation of the biclique partition number for graphs with specific blocks
Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 60-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

The biclique partition number of an undirected graph $G=(V,E)$ is the smallest number of bicliques (complete bipartite subgraphs) of the graph $G$ needed to partition the edge set $E.$ We present an efficient algorithm for finding the biclique partition number of a connected graph whose blocks are either complete graphs or complete bipartite graphs or cycles.
@article{TIMB_2012_20_1_a6,
     author = {V. V. Lepin and O. I. Duginov},
     title = {Computation of the biclique partition number for graphs with specific blocks},
     journal = {Trudy Instituta matematiki},
     pages = {60--73},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a6/}
}
TY  - JOUR
AU  - V. V. Lepin
AU  - O. I. Duginov
TI  - Computation of the biclique partition number for graphs with specific blocks
JO  - Trudy Instituta matematiki
PY  - 2012
SP  - 60
EP  - 73
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a6/
LA  - ru
ID  - TIMB_2012_20_1_a6
ER  - 
%0 Journal Article
%A V. V. Lepin
%A O. I. Duginov
%T Computation of the biclique partition number for graphs with specific blocks
%J Trudy Instituta matematiki
%D 2012
%P 60-73
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a6/
%G ru
%F TIMB_2012_20_1_a6
V. V. Lepin; O. I. Duginov. Computation of the biclique partition number for graphs with specific blocks. Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 60-73. http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a6/

[1] Graham R. L., Pollak H. O., “On the addressing problem for loop switching”, Bell Syst. Tech. J., 50:8 (1971), 2495–2519 | MR | Zbl

[2] Babai L., Frankl P., Linear Algebraic Methods in Combinatorics, Lecture Notes, University of Chicago, 1992

[3] Nau D. S., Markowsky G., Woodbury M. A., Amos D. B., “A mathematical analysis of human leukocyte antigen serology”, Math. Biosci., 40 (1978), 243–270 | DOI | MR | Zbl

[4] Dickerson M. T., Eppstein D., Goodrich M. T., Meng J. Y., “Confluent drawings: visualizing non-planar diagrams in a planar way”, GD 2003, Proc. 11th Int. Symp. Graph Drawing (Sep. 2003), Lecture Notes in Computer Science, 2912, Springer-Verlag, 1–12 | DOI | MR | Zbl

[5] Amilhastre J., Vilarem M. C., Janssen P., “Complexity of minimum biclique cover and minimum biclique decomposition for bipartite domino-free graphs”, Disc. App. Math., 86 (1998), 125–144 | DOI | MR | Zbl

[6] Tverberg H., “On the decomposition of $K_n$ into complete bipartite subgraphs”, J. Graph Theory, 6 (1982), 493–494 | DOI | MR | Zbl

[7] Peck G. W., “A new proof of a theorem of Graham and Pollak”, Discrete Math., 49 (1984), 327–328 | DOI | MR | Zbl

[8] Kratzke T., Reznick B., West D., “Eigensharp graphs: Decomposition into complete bipartite subgraphs”, Transactions of the AMS, 308 (1988), 637–653 | DOI | MR | Zbl

[9] Gregory D., Watts V. L., Shader B. L., “Biclique Decompositions and Hermitian Rank”, Linear Algebra Appl., 292 (1999), 267–280 | DOI | MR | Zbl

[10] Gregory D. A., Heyink B., Meulen K. V., “Inertia and biclique decompositions of joins of graphs”, J. of Combinatorial Theory B, 88 (2003), 135–151 | DOI | MR | Zbl

[11] Harary F., Hsu D., Miller Z., “The biparticity of a graph”, J. Graph Theory, 1 (1977), 131–133 | DOI | MR | Zbl

[12] Emelichev V. A., Melnikov O. I., Sarvanov V. I., Tyshkevich R. I., Lektsii po teorii grafov, Knizhnyi dom “Librokom”, M., 2009

[13] Tarjan R. E., “Depth-first search and linear graph algorithms”, SIAM J. Computing, 1 (1972), 146–160 | DOI | MR | Zbl