Tangential vectors for sets defined with systems of equations
Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 42-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

The general reduction principle in the problem on tangential vectors at a fixed point for a set defined with a finite system of equations is stated. This principle reduce the original problem to the similar one however with the zero first derivative. For the reduced problem the conditions when tangential vectors are determined with the properties of the second derivative are described.
@article{TIMB_2012_20_1_a4,
     author = {P. P. Zabreiko},
     title = {Tangential vectors for sets defined with systems of equations},
     journal = {Trudy Instituta matematiki},
     pages = {42--49},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a4/}
}
TY  - JOUR
AU  - P. P. Zabreiko
TI  - Tangential vectors for sets defined with systems of equations
JO  - Trudy Instituta matematiki
PY  - 2012
SP  - 42
EP  - 49
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a4/
LA  - ru
ID  - TIMB_2012_20_1_a4
ER  - 
%0 Journal Article
%A P. P. Zabreiko
%T Tangential vectors for sets defined with systems of equations
%J Trudy Instituta matematiki
%D 2012
%P 42-49
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a4/
%G ru
%F TIMB_2012_20_1_a4
P. P. Zabreiko. Tangential vectors for sets defined with systems of equations. Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 42-49. http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a4/

[1] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[2] Uoker R., Algebraicheskie krivye, Izd-vo in. lit-ry, M., 1952

[3] Rashevskii P. K., Kurs differentsialnoi geometrii, Gos. izd-vo tekhn. teoretich. lit-ry, M., 1956

[4] Favar Zh., Kurs lokalnoi differentsialnoi geometrii, Izd. in. lit-ry, M., 1960

[5] Finikov S. P., Kurs differentsialnoi geometrii, Gos. izd-vo tekhn. teoretich. lit-ry, M.–L., 1952 | MR

[6] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR

[7] Zabreiko P. P., Krasnoselskii M. A., “Ob uravneniyakh razvetvleniya”, Problemy matematicheskogo analiza slozhnykh sistem, v. 3, Voronezh, 1968; Труды семинара по функциональному анализу, 11, 80–93

[8] Bobylev N. A., Krasnoselskii M. A., Analiz na ekstremum. Vyrozhdennye sluchai, In-t problem upravleniya, M., 1981

[9] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR

[10] Arutyunov A. V., Usloviya ekstremuma. Anomalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR | Zbl

[11] Izmailov A. F., Tretyakov A. A., Faktoranaliz nelineinykh otobrazhenii, Fizmatlit, M., 1994

[12] Izmailov A. F., Tretyakov A. A., 2-regulyarnye resheniya nelineinykh zadach: teoriya i chislennye metody, Fizmatlit, M., 1996 | MR

[13] Zorich V. A., Matematicheskii analiz, v. I, Fazis, M., 1997 | MR | Zbl

[14] Reshetnyak Yu. G., Kurs matematicheskogo analiza, v. I, kn. 2, Izd-vo In-ta matem., Novosibirsk, 1999