Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2012_20_1_a10, author = {A. N. Tanyhina}, title = {On the convergence of {Ulm's} method for equations with regularly smooth operators}, journal = {Trudy Instituta matematiki}, pages = {104--110}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a10/} }
A. N. Tanyhina. On the convergence of Ulm's method for equations with regularly smooth operators. Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 104-110. http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a10/
[1] Ulm S., “Ob iteratsionnykh metodakh s posledovatelnoi approksimatsiei obratnogo operatora”, Izv. AN Estonskoi SSR, 16:4 (1967), 403–411 | MR
[2] Galperin A., Waksman Z., “Ulm's method under regular smoothness”, Numer. Funct. Anal. and Optimiz., 19:3–4 (1998), 285–307 | DOI | MR | Zbl
[3] Galperin A., Waksman Z., “Regular smoothness and Newton's method”, Numer. Funct. Anal. and Optimiz., 15:7–8 (1994), 813–858 | DOI | MR | Zbl
[4] Zabreiko P. P., Tanygina A. N., “Uslovie regulyarnoi gladkosti i metod Nyutona–Kantorovicha”, Tr. In-ta matematiki NAN Belarusi, 19:1 (2011), 52–61 | MR | Zbl
[5] Galperin A., Waksman Z., “Newton's method under a weak smoothness assumption”, J. Comp. Appl. Math., 35 (1991), 207–215 | DOI | MR | Zbl