On the convergence of Ulm's method for equations with regularly smooth operators
Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 104-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with Ulm's method for solving nonlinear operator equations in Banach spaces under the regular smoothness assumption of the operator involved. The convergence theorem is proved and the error bounds for the method are obtained.
@article{TIMB_2012_20_1_a10,
     author = {A. N. Tanyhina},
     title = {On the convergence of {Ulm's} method for equations with regularly smooth operators},
     journal = {Trudy Instituta matematiki},
     pages = {104--110},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a10/}
}
TY  - JOUR
AU  - A. N. Tanyhina
TI  - On the convergence of Ulm's method for equations with regularly smooth operators
JO  - Trudy Instituta matematiki
PY  - 2012
SP  - 104
EP  - 110
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a10/
LA  - ru
ID  - TIMB_2012_20_1_a10
ER  - 
%0 Journal Article
%A A. N. Tanyhina
%T On the convergence of Ulm's method for equations with regularly smooth operators
%J Trudy Instituta matematiki
%D 2012
%P 104-110
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a10/
%G ru
%F TIMB_2012_20_1_a10
A. N. Tanyhina. On the convergence of Ulm's method for equations with regularly smooth operators. Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 104-110. http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a10/

[1] Ulm S., “Ob iteratsionnykh metodakh s posledovatelnoi approksimatsiei obratnogo operatora”, Izv. AN Estonskoi SSR, 16:4 (1967), 403–411 | MR

[2] Galperin A., Waksman Z., “Ulm's method under regular smoothness”, Numer. Funct. Anal. and Optimiz., 19:3–4 (1998), 285–307 | DOI | MR | Zbl

[3] Galperin A., Waksman Z., “Regular smoothness and Newton's method”, Numer. Funct. Anal. and Optimiz., 15:7–8 (1994), 813–858 | DOI | MR | Zbl

[4] Zabreiko P. P., Tanygina A. N., “Uslovie regulyarnoi gladkosti i metod Nyutona–Kantorovicha”, Tr. In-ta matematiki NAN Belarusi, 19:1 (2011), 52–61 | MR | Zbl

[5] Galperin A., Waksman Z., “Newton's method under a weak smoothness assumption”, J. Comp. Appl. Math., 35 (1991), 207–215 | DOI | MR | Zbl