Hamiltonian completion
Trudy Instituta matematiki, Tome 19 (2011) no. 2, pp. 87-90
Voir la notice de l'article provenant de la source Math-Net.Ru
This article is a continuation of the work started in [1], where $L(2,1)$-coloring problem is interpreted as optimization task on the set of graph vertices. This approach enabled us to reduce solution of hamiltonian cycle problem to injective $\lambda$-coloring. Here we calculate edge distance from the given graph to the nearest graph containing hamiltonian path, also we construct hamiltonian graphs with at most one extra edge.
@article{TIMB_2011_19_2_a9,
author = {O. V. Maksimovich and R. I. Tyshkevich},
title = {Hamiltonian completion},
journal = {Trudy Instituta matematiki},
pages = {87--90},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a9/}
}
O. V. Maksimovich; R. I. Tyshkevich. Hamiltonian completion. Trudy Instituta matematiki, Tome 19 (2011) no. 2, pp. 87-90. http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a9/