Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2011_19_2_a7, author = {V. V. Lepin and O. I. Duginov}, title = {Algorithms for finding biclique covers of graphs with bounded pathwidth}, journal = {Trudy Instituta matematiki}, pages = {69--81}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a7/} }
TY - JOUR AU - V. V. Lepin AU - O. I. Duginov TI - Algorithms for finding biclique covers of graphs with bounded pathwidth JO - Trudy Instituta matematiki PY - 2011 SP - 69 EP - 81 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a7/ LA - ru ID - TIMB_2011_19_2_a7 ER -
V. V. Lepin; O. I. Duginov. Algorithms for finding biclique covers of graphs with bounded pathwidth. Trudy Instituta matematiki, Tome 19 (2011) no. 2, pp. 69-81. http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a7/
[1] Blundo C., De Santis A., Stinson D.R., Vaccaro U., “Graph Decompositions and Secret Sharing Schemes”, J. Cryptology, 8:1 (1995), 39–64 | DOI | MR | Zbl
[2] Fishburn P.C., Hammer P.L., “Bipartite dimensions and bipartite degrees of graphs”, Discrete Math., 160 (1996), 127–148 | DOI | MR | Zbl
[3] Benzaken C., Boyd S., Hammer P.L., Simeone B., “Adjoints of pure bidirected graphs”, Congr. Numerantium, 39 (1983), 123–144 | MR | Zbl
[4] Crama Y., Hammer P.L., “Recognition of quadratic graphs and adjoints of bidirected graphs”, Ann. N.Y. Academy Sciences, 555 (1989), 140–149 | DOI | MR | Zbl
[5] Hammer P.L., Simeone B., “Quasimonotone Boolean functions and bistellar graphs”, Ann. Discrete Math., 9 (1980), 107–119 | DOI | MR | Zbl
[6] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982 | MR
[7] Günlük O., “A new min-vut max-flow ration for multicommodity flows”, Integer programming and combinatorial optimization, LNCS, 2337 (2006), 54–66 | DOI | MR
[8] Monson S.D., Pullman N.J., Rees R., “A survey of clique and biclique coverings and factorizations of $(0,1)$ — matrices”, Bull Institute Contrum. Appl., 14 (1995), 17–86 | MR | Zbl
[9] Nau D.S., Markowsky G., Woodburry M.A., Amos D.B., “A mathematical analysis of human leukocyte antigen serology”, Math. Biosci., 1978, 243–270 | DOI | MR | Zbl
[10] Lepin V.V., “Algoritmy dlya nakhozhdeniya multiklikovoi i biklikovoi stepeni posledovatelno-parallelnogo grafa”, Trudy Instituta matematiki, 18:2 (2010), 60–78 | MR | Zbl
[11] Lepin V.V., “Lineinyi algoritm dlya vychisleniya chisla multiklikovogo pokrytiya posledovatelno-parallelnogo grafa”, Trudy Instituta matematiki, 17:1 (2009), 90–102 | Zbl
[12] Lepin V.V., “Lineinyi algoritm dlya vychisleniya chisla biklikovogo pokrytiya posledovatelno-parallelnogo grafa”, Trudy Instituta matematiki, 16:2 (2008), 63–75 | MR | Zbl
[13] Robertson N., Seymour D., “Graph Minor II. Algorithmic aspects of tree width”, J. Algorithms, 7 (1986), 309–322 | DOI | MR | Zbl
[14] Bodlaender H.L., “A linear-time algorithm for finding tree decompositions of small treewidth”, SIAM J. Comput., 25 (1996), 1305–1317 | DOI | MR | Zbl
[15] Cattell K., Dinneen M.J., Fellows M.R., “A simple linear-time algorithm for finding path-decompositions of small width”, Inform. Process. Lett., 57:4 (1996), 197–203 | DOI | MR | Zbl
[16] Perkovic' L., Reed B., “An Improved Algorithm for Finding Tree Decompositions of Small Width”, Lecture Notes In Computer Science, 1665, 1999, 148–154 | MR | Zbl
[17] Diaz J., Petit J., Serna M., “A survey of graph layout problems”, ACM Comput. Surveys, 34:3 (2002), 313–356 | DOI
[18] Kinnersley N.G., “The vertex separation number of a graph equals its path-width”, Inform. Process. Lett., 42:6 (1992), 345–350 | DOI | MR | Zbl
[19] Lepin V.V., “Reshenie zadach v klasse frontalno-ogranichennykh grafov”, Vestsi AN Belarusi. Ser. fiz.-mat. navuk, 1996, no. 3, 101–105 | MR | Zbl
[20] Bodlaender H.L., Kloks T., “Efficient and constructive algorithms for the pathwidth and treewidth of graphs”, J. Algorithms, 21 (1996), 358–402 | DOI | MR | Zbl
[21] Courcelle B., “The monadic second-order logic of graphs I: Recognizable sets of finite graphs”, Information and Computation, 85 (1990), 12–75 | DOI | MR | Zbl
[22] Wolle T., “A Framework for Network Reliability Problems on Graphs of Bounded Treewidth”, LNCS, 2518 (2002), 401–420 | MR
[23] Andreica M.I., “A Dynamic Programming Framework for Combinatorial Optimization Problems on Graphs with Bounded Pathwidth”, Proceedings of the IEEE International Conference on Automation, Quality and Testing, Robotics (THETA 16) (AQTR) – Poster Session, 2008, 120–125
[24] Lepin V.V., “Algoritmy resheniya zadach na grafakh s ogranichennoi putevoi shirinoi”, Trudy Instituta matematiki, 18:1 (2010), 53–71
[25] Bodlaender H.L., Telle J.A., “Space-efficient construction variants of dynamic programming”, Nordic Journal of Computing, 11:4 (2004), 374–385 | MR | Zbl