Algorithms for finding biclique covers of graphs with bounded pathwidth
Trudy Instituta matematiki, Tome 19 (2011) no. 2, pp. 69-81
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we present space-efficient algorithms for solving construction variants of biclique cover problems on graphs with bounded pathwidth. A biclique is a complete bipartite subgraph of a graph. Algorithms for solving the problem of finding a biclique cover with minimal degree and the problem of finding a biclique cover with minimal number of bicliques on this type of graphs in $O(n\log n)$ time with $O(\log n)$ additional memory are given.
@article{TIMB_2011_19_2_a7,
author = {V. V. Lepin and O. I. Duginov},
title = {Algorithms for finding biclique covers of graphs with bounded pathwidth},
journal = {Trudy Instituta matematiki},
pages = {69--81},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a7/}
}
TY - JOUR AU - V. V. Lepin AU - O. I. Duginov TI - Algorithms for finding biclique covers of graphs with bounded pathwidth JO - Trudy Instituta matematiki PY - 2011 SP - 69 EP - 81 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a7/ LA - ru ID - TIMB_2011_19_2_a7 ER -
V. V. Lepin; O. I. Duginov. Algorithms for finding biclique covers of graphs with bounded pathwidth. Trudy Instituta matematiki, Tome 19 (2011) no. 2, pp. 69-81. http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a7/