On cycle covers of graphs with bounded pathwidth
Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 71-84

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present space-efficient algorithms for solving construction variants of cycle cover problems on graphs with bounded pathwidth. Algorithms for solving the problem of finding a vertex disjoint cycle cover with minimal number of cycles and for solving the $\lambda$-cycle cover problem on this type of graphs in $O(n\log n)$ time with $O(1)$ additional memory are given.
@article{TIMB_2011_19_1_a7,
     author = {V. V. Lepin},
     title = {On cycle covers of graphs with bounded pathwidth},
     journal = {Trudy Instituta matematiki},
     pages = {71--84},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a7/}
}
TY  - JOUR
AU  - V. V. Lepin
TI  - On cycle covers of graphs with bounded pathwidth
JO  - Trudy Instituta matematiki
PY  - 2011
SP  - 71
EP  - 84
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a7/
LA  - ru
ID  - TIMB_2011_19_1_a7
ER  - 
%0 Journal Article
%A V. V. Lepin
%T On cycle covers of graphs with bounded pathwidth
%J Trudy Instituta matematiki
%D 2011
%P 71-84
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a7/
%G ru
%F TIMB_2011_19_1_a7
V. V. Lepin. On cycle covers of graphs with bounded pathwidth. Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 71-84. http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a7/