Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2011_19_1_a3, author = {O. N. Evkhuta and P. P. Zabreiko}, title = {A principle for study of quasi-gradient methods of approximate solving operator equations in {Hilbert} spaces}, journal = {Trudy Instituta matematiki}, pages = {32--44}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a3/} }
TY - JOUR AU - O. N. Evkhuta AU - P. P. Zabreiko TI - A principle for study of quasi-gradient methods of approximate solving operator equations in Hilbert spaces JO - Trudy Instituta matematiki PY - 2011 SP - 32 EP - 44 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a3/ LA - ru ID - TIMB_2011_19_1_a3 ER -
%0 Journal Article %A O. N. Evkhuta %A P. P. Zabreiko %T A principle for study of quasi-gradient methods of approximate solving operator equations in Hilbert spaces %J Trudy Instituta matematiki %D 2011 %P 32-44 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a3/ %G ru %F TIMB_2011_19_1_a3
O. N. Evkhuta; P. P. Zabreiko. A principle for study of quasi-gradient methods of approximate solving operator equations in Hilbert spaces. Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 32-44. http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a3/
[1] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl
[2] Krasnoselskii M.A., Vainikko G.M., Zabreiko P.P., Rutitskii Ya.B., Stetsenko V.Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR
[3] Evkhuta O.N., Zabreiko P.P., “Neskolko zamechanii ob iteratsionnykh gradientnykh i kvazi-gradientnykh metodakh priblizhennogo resheniya nelineinykh operatornykh uravnenii”, Izv. vuzov. Severo-Kavkazskii region. Estestvennye nauki, 2005, no. 11, 27–37 | Zbl
[4] Kirsanova-Evkhuta O.N., “Novye teoremy o skhodimosti gradientnykh metodov priblizhennogo resheniya operatornykh uravnenii”, Tez. dokl. mezhdunar. konf.: AMADE. 4–9 sentyabrya 2003 g., 2003, Minsk, 91
[5] Vainberg M.M., “O skhodimosti protsessa naiskoreishego spuska dlya nelineinykh uravnenii”, Sibirskii mat. zhurn., 2:2 (1961), 201–220 | MR | Zbl
[6] Fridman V.M., “Iterativnyi protsess s minimalnymi oshibkami dlya nelineinogo operatornogo uravneniya”, Dokl. AN SSSR, 139:5 (1961), 1063–1066 | MR | Zbl
[7] Altman M., “Concerning the approximate solutions of operator equations in Hilbert space”, Bull. Acad. polon. sci., Cl. 3, 5:7 (1957), 711–715 | MR | Zbl
[8] Zabreiko P.P., Kirsanova-Evkhuta O.N., “Novaya teorema o skhodimosti metoda minimalnykh nevyazok”, Vestsi NAN Belarusi, 2004, no. 2, 5–8 | MR
[9] Kirsanova-Evkhuta O.N., “Teoremy o skhodimosti metoda naiskoreishego spuska i metoda minimalnykh oshibok”, Dokl. NAN Belarusi, 48:2 (2004), 10–15 | MR | Zbl
[10] Kivistik L.A., “O metode naiskoreishego spuska dlya resheniya nelineinykh uravnenii”, Izv. AN EstSSR, ser. fiz.-mat. i tekh. nauk, 9:2 (1960), 145–159 | MR
[11] Kivistik L.A., “O nekotorykh iteratsionnykh metodakh dlya resheniya operatornykh uravnenii v prostranstve Gilberta”, Izv. AN EstSSR, ser. fiz.-mat. i tekh. nauk, 9:3 (1960), 229–241 | MR | Zbl
[12] Krasnoselskii M.A., Zabreiko P.P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR