A principle for study of quasi-gradient methods of approximate solving operator equations in Hilbert spaces
Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 32-44
Voir la notice de l'article provenant de la source Math-Net.Ru
The article deals with nonlinear operator equations $f(x)=0$ with operators $f$ defined on a ball $B(x_0,R)$ in a Hilbert space $X$ and taking values from $X$. It is considered iterative methods of type
$x_{n+1}=x_n-\Lambda(x_n)T(x_n)$, $n=0,1,2,ldots$, where $T(\xi)$ is an operator from $B(x_0,R)$ into $X$ and $\Lambda(\xi)$ a real functional on on $B(x_0,R)$. It is described conditions under that there is a phenomenon of relaxation of residuals: $\|f(x_{n+1}\|\|f(x_n)\|$. The study of the convergence of iterations and its rate us reduce to the analysis of a scalar function; the graph of this function determines as the conditions of the convergence of iterations well as the rate of this convergence; moreover, it allows to write simple a priori and a posteriori estimates of errors. The general scheme covers classical methods of minimal residuals, of steepest descent, of minimal errors and some others.
@article{TIMB_2011_19_1_a3,
author = {O. N. Evkhuta and P. P. Zabreiko},
title = {A principle for study of quasi-gradient methods of approximate solving operator equations in {Hilbert} spaces},
journal = {Trudy Instituta matematiki},
pages = {32--44},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a3/}
}
TY - JOUR AU - O. N. Evkhuta AU - P. P. Zabreiko TI - A principle for study of quasi-gradient methods of approximate solving operator equations in Hilbert spaces JO - Trudy Instituta matematiki PY - 2011 SP - 32 EP - 44 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a3/ LA - ru ID - TIMB_2011_19_1_a3 ER -
%0 Journal Article %A O. N. Evkhuta %A P. P. Zabreiko %T A principle for study of quasi-gradient methods of approximate solving operator equations in Hilbert spaces %J Trudy Instituta matematiki %D 2011 %P 32-44 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a3/ %G ru %F TIMB_2011_19_1_a3
O. N. Evkhuta; P. P. Zabreiko. A principle for study of quasi-gradient methods of approximate solving operator equations in Hilbert spaces. Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 32-44. http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a3/