A principle for study of quasi-gradient methods of approximate solving operator equations in Hilbert spaces
Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 32-44

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with nonlinear operator equations $f(x)=0$ with operators $f$ defined on a ball $B(x_0,R)$ in a Hilbert space $X$ and taking values from $X$. It is considered iterative methods of type $x_{n+1}=x_n-\Lambda(x_n)T(x_n)$, $n=0,1,2,ldots$, where $T(\xi)$ is an operator from $B(x_0,R)$ into $X$ and $\Lambda(\xi)$ a real functional on on $B(x_0,R)$. It is described conditions under that there is a phenomenon of relaxation of residuals: $\|f(x_{n+1}\|\|f(x_n)\|$. The study of the convergence of iterations and its rate us reduce to the analysis of a scalar function; the graph of this function determines as the conditions of the convergence of iterations well as the rate of this convergence; moreover, it allows to write simple a priori and a posteriori estimates of errors. The general scheme covers classical methods of minimal residuals, of steepest descent, of minimal errors and some others.
@article{TIMB_2011_19_1_a3,
     author = {O. N. Evkhuta and P. P. Zabreiko},
     title = {A principle for study of quasi-gradient methods of approximate solving operator equations in {Hilbert} spaces},
     journal = {Trudy Instituta matematiki},
     pages = {32--44},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a3/}
}
TY  - JOUR
AU  - O. N. Evkhuta
AU  - P. P. Zabreiko
TI  - A principle for study of quasi-gradient methods of approximate solving operator equations in Hilbert spaces
JO  - Trudy Instituta matematiki
PY  - 2011
SP  - 32
EP  - 44
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a3/
LA  - ru
ID  - TIMB_2011_19_1_a3
ER  - 
%0 Journal Article
%A O. N. Evkhuta
%A P. P. Zabreiko
%T A principle for study of quasi-gradient methods of approximate solving operator equations in Hilbert spaces
%J Trudy Instituta matematiki
%D 2011
%P 32-44
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a3/
%G ru
%F TIMB_2011_19_1_a3
O. N. Evkhuta; P. P. Zabreiko. A principle for study of quasi-gradient methods of approximate solving operator equations in Hilbert spaces. Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 32-44. http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a3/