A principle for study of quasi-gradient methods of approximate solving operator equations in Hilbert spaces
Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 32-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with nonlinear operator equations $f(x)=0$ with operators $f$ defined on a ball $B(x_0,R)$ in a Hilbert space $X$ and taking values from $X$. It is considered iterative methods of type $x_{n+1}=x_n-\Lambda(x_n)T(x_n)$, $n=0,1,2,ldots$, where $T(\xi)$ is an operator from $B(x_0,R)$ into $X$ and $\Lambda(\xi)$ a real functional on on $B(x_0,R)$. It is described conditions under that there is a phenomenon of relaxation of residuals: $\|f(x_{n+1}\|\|f(x_n)\|$. The study of the convergence of iterations and its rate us reduce to the analysis of a scalar function; the graph of this function determines as the conditions of the convergence of iterations well as the rate of this convergence; moreover, it allows to write simple a priori and a posteriori estimates of errors. The general scheme covers classical methods of minimal residuals, of steepest descent, of minimal errors and some others.
@article{TIMB_2011_19_1_a3,
     author = {O. N. Evkhuta and P. P. Zabreiko},
     title = {A principle for study of quasi-gradient methods of approximate solving operator equations in {Hilbert} spaces},
     journal = {Trudy Instituta matematiki},
     pages = {32--44},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a3/}
}
TY  - JOUR
AU  - O. N. Evkhuta
AU  - P. P. Zabreiko
TI  - A principle for study of quasi-gradient methods of approximate solving operator equations in Hilbert spaces
JO  - Trudy Instituta matematiki
PY  - 2011
SP  - 32
EP  - 44
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a3/
LA  - ru
ID  - TIMB_2011_19_1_a3
ER  - 
%0 Journal Article
%A O. N. Evkhuta
%A P. P. Zabreiko
%T A principle for study of quasi-gradient methods of approximate solving operator equations in Hilbert spaces
%J Trudy Instituta matematiki
%D 2011
%P 32-44
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a3/
%G ru
%F TIMB_2011_19_1_a3
O. N. Evkhuta; P. P. Zabreiko. A principle for study of quasi-gradient methods of approximate solving operator equations in Hilbert spaces. Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 32-44. http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a3/

[1] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[2] Krasnoselskii M.A., Vainikko G.M., Zabreiko P.P., Rutitskii Ya.B., Stetsenko V.Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[3] Evkhuta O.N., Zabreiko P.P., “Neskolko zamechanii ob iteratsionnykh gradientnykh i kvazi-gradientnykh metodakh priblizhennogo resheniya nelineinykh operatornykh uravnenii”, Izv. vuzov. Severo-Kavkazskii region. Estestvennye nauki, 2005, no. 11, 27–37 | Zbl

[4] Kirsanova-Evkhuta O.N., “Novye teoremy o skhodimosti gradientnykh metodov priblizhennogo resheniya operatornykh uravnenii”, Tez. dokl. mezhdunar. konf.: AMADE. 4–9 sentyabrya 2003 g., 2003, Minsk, 91

[5] Vainberg M.M., “O skhodimosti protsessa naiskoreishego spuska dlya nelineinykh uravnenii”, Sibirskii mat. zhurn., 2:2 (1961), 201–220 | MR | Zbl

[6] Fridman V.M., “Iterativnyi protsess s minimalnymi oshibkami dlya nelineinogo operatornogo uravneniya”, Dokl. AN SSSR, 139:5 (1961), 1063–1066 | MR | Zbl

[7] Altman M., “Concerning the approximate solutions of operator equations in Hilbert space”, Bull. Acad. polon. sci., Cl. 3, 5:7 (1957), 711–715 | MR | Zbl

[8] Zabreiko P.P., Kirsanova-Evkhuta O.N., “Novaya teorema o skhodimosti metoda minimalnykh nevyazok”, Vestsi NAN Belarusi, 2004, no. 2, 5–8 | MR

[9] Kirsanova-Evkhuta O.N., “Teoremy o skhodimosti metoda naiskoreishego spuska i metoda minimalnykh oshibok”, Dokl. NAN Belarusi, 48:2 (2004), 10–15 | MR | Zbl

[10] Kivistik L.A., “O metode naiskoreishego spuska dlya resheniya nelineinykh uravnenii”, Izv. AN EstSSR, ser. fiz.-mat. i tekh. nauk, 9:2 (1960), 145–159 | MR

[11] Kivistik L.A., “O nekotorykh iteratsionnykh metodakh dlya resheniya operatornykh uravnenii v prostranstve Gilberta”, Izv. AN EstSSR, ser. fiz.-mat. i tekh. nauk, 9:3 (1960), 229–241 | MR | Zbl

[12] Krasnoselskii M.A., Zabreiko P.P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR