Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2011_19_1_a1, author = {I. V. Bulgakov}, title = {Metric theory of transcendental complex numbers in the areas of small measure}, journal = {Trudy Instituta matematiki}, pages = {12--21}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a1/} }
I. V. Bulgakov. Metric theory of transcendental complex numbers in the areas of small measure. Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 12-21. http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a1/
[1] Sprindzhuk V.G., Problema Malera v metricheskoi teorii chisel, Minsk, 1967
[2] Bernik V.I., “Metricheskaya teorema o sovmestnom priblizhenii nulya znacheniyami tselochislennykh mnogochlenov”, Izv. AN SSSR. Ser. mat., 44:1 (1980), 24–45 | MR
[3] Bernik V.I., Zheludevich F.F., Neobkhodimoe uslovie vzaimnoi prostoty tselochislennykh mnogochlenov, prinimayuschikh malye znacheniya v nekotorom kruge, Minsk, 1983, Preprint / Akad. nauk Belorus. SSR, In-t mat. No25(182)
[4] Vasilev D.V., O tochnom priblizhenii nulya znacheniyami tselochislennykh mnogochlenov kompleksnoi peremennoi, Minsk, 1998, 15 pp., Preprint / NAN Belarusi, In-t mat.
[5] Bernik V.I., Shamukova N.V., “Priblizhenie deistvitelnykh chisel tselymi algebraicheskimi chislami i Teorema Khinchina”, Dokl. NAN RB, 50:3 (2006), 30–32 | MR | Zbl
[6] Beresnevich V., Rational points near manifolds and metric Diophantine approximation, Preprint, arXiv: 0904.0474