Approximate fine information structure of algorithms
Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 87-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for obtaining of functions setting data dependencies for sequential programs is presented.\linebreak The method is suitable for the automatization. In practice it is applicable in most cases.
@article{TIMB_2010_18_2_a7,
     author = {N. A. Likhoded},
     title = {Approximate fine information structure of algorithms},
     journal = {Trudy Instituta matematiki},
     pages = {87--92},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a7/}
}
TY  - JOUR
AU  - N. A. Likhoded
TI  - Approximate fine information structure of algorithms
JO  - Trudy Instituta matematiki
PY  - 2010
SP  - 87
EP  - 92
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a7/
LA  - ru
ID  - TIMB_2010_18_2_a7
ER  - 
%0 Journal Article
%A N. A. Likhoded
%T Approximate fine information structure of algorithms
%J Trudy Instituta matematiki
%D 2010
%P 87-92
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a7/
%G ru
%F TIMB_2010_18_2_a7
N. A. Likhoded. Approximate fine information structure of algorithms. Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 87-92. http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a7/

[1] Voevodin V.V., Voevodin Vl.V., Parallelnye vychisleniya, BKhV-Peterburg, SPb., 2002

[2] Voevodin V.V., Vychislitelnaya matematika i struktura algoritmov, Izd-vo MGU, M., 2006 http:parallel.ru/info/parallel/voevodin/

[3] Feautrier P., “Some efficient solutions to the affine scheduling problem. Part 1”, International Journal of Parallel Programming, 21:5 (1992), 313–348 | DOI | MR

[4] Bondhugula U., Baskaran M., Krishnamoorthy S., Ramanujam J., Rountev A., Sadayappan P., “Automatic transformations for communication-minimized parallelization and locality optimization in the polyhedral model”, International Conference on Compiler Construction (ETAPS CC) (Apr 2008, Budapest, Hungary), 2008

[5] http://parallel.ru/v-ray/

[6] http://ops.rsu.ru/about.shtml

[7] http://pluto-compiler.sourceforge.net

[8] Markus M., Mink Kh., Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972 | MR

[9] Darte A., “Mathematical tools for loop transformations: from systems of uniform recurrence equations to the polytope model”, Algorithms for Parallel Processing, IMA Volumes in Mathematics and its Applications, 105, 1999, 147–183 | MR | Zbl