Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2010_18_2_a7, author = {N. A. Likhoded}, title = {Approximate fine information structure of algorithms}, journal = {Trudy Instituta matematiki}, pages = {87--92}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a7/} }
N. A. Likhoded. Approximate fine information structure of algorithms. Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 87-92. http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a7/
[1] Voevodin V.V., Voevodin Vl.V., Parallelnye vychisleniya, BKhV-Peterburg, SPb., 2002
[2] Voevodin V.V., Vychislitelnaya matematika i struktura algoritmov, Izd-vo MGU, M., 2006 http:parallel.ru/info/parallel/voevodin/
[3] Feautrier P., “Some efficient solutions to the affine scheduling problem. Part 1”, International Journal of Parallel Programming, 21:5 (1992), 313–348 | DOI | MR
[4] Bondhugula U., Baskaran M., Krishnamoorthy S., Ramanujam J., Rountev A., Sadayappan P., “Automatic transformations for communication-minimized parallelization and locality optimization in the polyhedral model”, International Conference on Compiler Construction (ETAPS CC) (Apr 2008, Budapest, Hungary), 2008
[6] http://ops.rsu.ru/about.shtml
[7] http://pluto-compiler.sourceforge.net
[8] Markus M., Mink Kh., Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972 | MR
[9] Darte A., “Mathematical tools for loop transformations: from systems of uniform recurrence equations to the polytope model”, Algorithms for Parallel Processing, IMA Volumes in Mathematics and its Applications, 105, 1999, 147–183 | MR | Zbl