The profile of the corona $G\wedge H$, where $G$ is a Halin graph, whose tree is a caterpillar
Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 79-86

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G=(V,E)$ be a graph on $n$ vertices. A 1-1 mapping $f\colon V\to\{1,2,\dots,n\}$ is called a linear arrangement of $G$. Given a graph $G$, the profile problem is to find the profile of $$ G:p(G)=\min_f\sum_{v\in V}\max_{u\in N[v]}(f(v)-f(u)), $$ where $N[v]=\{v\}\cup\{u\in V:\{v,u\}\in E\}$. A Halin graph $H=T\cup C$ is obtained by embedding a tree $T$ having no degree two nodes in the plane, and then adding a cycle $C$ to join the leaves of $T$ in such a way that the resulting graph is planar. The corona of graphs $G_1$ and $G_2$, on $n_1$ and $n_2$ vertices, respectively, is denoted by $G_1\wedge G_2$ and contains one copy of $G_1$ and $n_1$ copies of $G_2$. Each distinct vertex of $G_1$ is joined to every vertex of the corresponding copy of $G_2$. This paper shows that, if $G$ is a Halin graph such that the tree $T$ is a caterpillar then $p(G)=3(n-2)$ and $p(G\wedge H)=3(n-2)+np(H)+(3n-6)m$, where $n=|V(G)|$, $m=|V(H)|$.
@article{TIMB_2010_18_2_a6,
     author = {V. V. Lepin and S. A. Tsikhan},
     title = {The profile of the corona $G\wedge H$, where $G$ is a {Halin} graph, whose tree is a caterpillar},
     journal = {Trudy Instituta matematiki},
     pages = {79--86},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a6/}
}
TY  - JOUR
AU  - V. V. Lepin
AU  - S. A. Tsikhan
TI  - The profile of the corona $G\wedge H$, where $G$ is a Halin graph, whose tree is a caterpillar
JO  - Trudy Instituta matematiki
PY  - 2010
SP  - 79
EP  - 86
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a6/
LA  - ru
ID  - TIMB_2010_18_2_a6
ER  - 
%0 Journal Article
%A V. V. Lepin
%A S. A. Tsikhan
%T The profile of the corona $G\wedge H$, where $G$ is a Halin graph, whose tree is a caterpillar
%J Trudy Instituta matematiki
%D 2010
%P 79-86
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a6/
%G ru
%F TIMB_2010_18_2_a6
V. V. Lepin; S. A. Tsikhan. The profile of the corona $G\wedge H$, where $G$ is a Halin graph, whose tree is a caterpillar. Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 79-86. http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a6/