Algorithms for computing the multiclique degree and the biclique degreeof a series-parallel graph
Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 60-78

Voir la notice de l'article provenant de la source Math-Net.Ru

A multiclique is a complete multipartite subgraph of a graph. A biclique is a complete bipartite subgraph of a graph. A multiclique cover of a graph $G$ is a collection of multicliques of $G$ whose edge sets cover the edge set of $G$ (every edge of $G$ belongs to at least one multiclique of the collection). Given a multiclique cover $\mathcal{C}$ of $G$ and a vertex $v\in V(G),$ the degree $v$ on $\mathcal{C}$ is $\rho(G,\mathcal{C},v)=|\{H\in\mathcal{C}:v\in H\}|$. The degree of a multiclique cover $\mathcal{C}$ of $G$, denoted by $\rho(G,\mathcal{C})$, is defined to be: $\rho(G,\mathcal{C})=\max\limits_{v\in V(G)}\rho(G,\mathcal{C},v)$. The multiclique degree of $G$, denoted by $\rho(G)$, is the minimum value of $\rho(G,\mathcal{C})$ as $\mathcal{C}$ ranges over all coverings of $G$. Polinomial-time algorithms for computing the multiclique degree and the biclique degree of a (simple) series-parallel graph are given.
@article{TIMB_2010_18_2_a5,
     author = {V. V. Lepin},
     title = {Algorithms for computing the multiclique degree and the biclique degreeof a series-parallel graph},
     journal = {Trudy Instituta matematiki},
     pages = {60--78},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a5/}
}
TY  - JOUR
AU  - V. V. Lepin
TI  - Algorithms for computing the multiclique degree and the biclique degreeof a series-parallel graph
JO  - Trudy Instituta matematiki
PY  - 2010
SP  - 60
EP  - 78
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a5/
LA  - ru
ID  - TIMB_2010_18_2_a5
ER  - 
%0 Journal Article
%A V. V. Lepin
%T Algorithms for computing the multiclique degree and the biclique degreeof a series-parallel graph
%J Trudy Instituta matematiki
%D 2010
%P 60-78
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a5/
%G ru
%F TIMB_2010_18_2_a5
V. V. Lepin. Algorithms for computing the multiclique degree and the biclique degreeof a series-parallel graph. Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 60-78. http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a5/