On $p$-locally N-closed formations of finite groups
Trudy Instituta matematiki, Tome 18 (2010) no. 1, pp. 92-98

Voir la notice de l'article provenant de la source Math-Net.Ru

All groups considered are finite. A formation $\mathfrak{F}\ne\emptyset$ is called locally N-closed (N-closed) in a group class $\mathfrak{X}$, if the following assertion holds: if $G\in\mathfrak{X}$ and $P\le Z_{\mathfrak{F}}(N_G(P))$ ($N_G(P)\in \mathfrak{F}$ respectively) for every Sylow subgroup $P\ne1$ in $G$, then $G\in\mathfrak{F}$. It is proved that in the soluble universe, every hereditary saturated locally N-closed non-empty formation is N-closed. It is proved that the formation of all supersoluble groups is N-closed in the class of all soluble groups with $p$-length $\le1$ for every prime $p,$ and is not N-closed in the class of all soluble groups with $p$-length $\le2$ for every prime $p$. The authors also consider $p$-locally N-closed formations.
@article{TIMB_2010_18_1_a9,
     author = {A. A. Rodionov and L. A. Shemetkov},
     title = {On $p$-locally {N-closed} formations of finite groups},
     journal = {Trudy Instituta matematiki},
     pages = {92--98},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a9/}
}
TY  - JOUR
AU  - A. A. Rodionov
AU  - L. A. Shemetkov
TI  - On $p$-locally N-closed formations of finite groups
JO  - Trudy Instituta matematiki
PY  - 2010
SP  - 92
EP  - 98
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a9/
LA  - ru
ID  - TIMB_2010_18_1_a9
ER  - 
%0 Journal Article
%A A. A. Rodionov
%A L. A. Shemetkov
%T On $p$-locally N-closed formations of finite groups
%J Trudy Instituta matematiki
%D 2010
%P 92-98
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a9/
%G ru
%F TIMB_2010_18_1_a9
A. A. Rodionov; L. A. Shemetkov. On $p$-locally N-closed formations of finite groups. Trudy Instituta matematiki, Tome 18 (2010) no. 1, pp. 92-98. http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a9/