Algorithms for solving problems on graphs of bounded pathwidth
Trudy Instituta matematiki, Tome 18 (2010) no. 1, pp. 53-71

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present a space-efficient algorithmic framework for solving construction variants of problems on graphs with bounded pathwidth. Algorithms for solving the $\lambda$-path cover problems and the problem of finding a minimum-weight Hamiltonian cycle on this type of graphs in $O(n\log n)$ time with $O(1)$ additional memory are given. An algorithm for solving 3-SAT with formulas having pathwidth-k interaction graphs in $O(n\log n)$ time with $O(1)$ additional memory is present.
@article{TIMB_2010_18_1_a6,
     author = {V. V. Lepin},
     title = {Algorithms for solving problems on graphs of bounded pathwidth},
     journal = {Trudy Instituta matematiki},
     pages = {53--71},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a6/}
}
TY  - JOUR
AU  - V. V. Lepin
TI  - Algorithms for solving problems on graphs of bounded pathwidth
JO  - Trudy Instituta matematiki
PY  - 2010
SP  - 53
EP  - 71
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a6/
LA  - ru
ID  - TIMB_2010_18_1_a6
ER  - 
%0 Journal Article
%A V. V. Lepin
%T Algorithms for solving problems on graphs of bounded pathwidth
%J Trudy Instituta matematiki
%D 2010
%P 53-71
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a6/
%G ru
%F TIMB_2010_18_1_a6
V. V. Lepin. Algorithms for solving problems on graphs of bounded pathwidth. Trudy Instituta matematiki, Tome 18 (2010) no. 1, pp. 53-71. http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a6/