Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2010_18_1_a5, author = {V. P. Il'ev and S. D. Il'eva}, title = {Approximation algorithms for approximating graphs with bounded numberof connected components}, journal = {Trudy Instituta matematiki}, pages = {47--52}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a5/} }
TY - JOUR AU - V. P. Il'ev AU - S. D. Il'eva TI - Approximation algorithms for approximating graphs with bounded numberof connected components JO - Trudy Instituta matematiki PY - 2010 SP - 47 EP - 52 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a5/ LA - ru ID - TIMB_2010_18_1_a5 ER -
V. P. Il'ev; S. D. Il'eva. Approximation algorithms for approximating graphs with bounded numberof connected components. Trudy Instituta matematiki, Tome 18 (2010) no. 1, pp. 47-52. http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a5/
[1] Zahn C., “Approximating symmetric relations by equivalence relations”, J. of the Society for Industrial and Applied Mathematics, 12:4 (1964), 840–847 | DOI | MR | Zbl
[2] Lyapunov A.A., “O stroenii i evolyutsii upravlyayuschikh sistem v svyazi s teoriei klassifikatsii”, Problemy kibernetiki, 27, Nauka, M., 1973, 7–18
[3] Mirkin B.G., “Zadachi approksimatsii v prostranstve otnoshenii i analiz nechislovykh dannykh”, Avtomatika i telemekhanika, 1974, no. 9, 53–61
[4] Tyshkevich R.I., “Matroidnye razlozheniya grafa”, Diskretnaya matematika, 1:3 (1989), 129–138 | MR | Zbl
[5] Fridman G.Sh., “Odna zadacha approksimatsii grafov”, Upravlyaemye sistemy. Sb. nauch. tr., 8, Institut matematiki SO AN SSSR, Novosibirsk, 1971, 73–75
[6] Edmonds J., “Paths, trees, and flowers”, Canadian J. of Mathematics, 17:3 (1965), 449–467 | DOI | MR | Zbl
[7] Fridman G.Sh., “Ob odnom neravenstve v zadache approksimatsii grafov”, Kibernetika, 1974, no. 3, 151
[8] Fridman G.Sh., “Issledovanie odnoi zadachi klassifikatsii na grafakh”, Metody modelirovaniya i obrabotki informatsii, Nauka, Novosibirsk, 1976, 147–177
[9] Tomescu I., “La reduction minimale d'un graphe à une reunion de cliques”, Discrete Math., 10:1-2 (1974), 173–179 | DOI | MR | Zbl
[10] Ilev V.P., Fridman G.Sh., “K zadache approksimatsii grafami s fiksirovannym chislom komponent”, Dokl. AN SSSR, 264:3 (1982), 533–538 | MR
[11] Fridman G.Sh., “Polinomialnaya polnota nekotorykh modifikatsii zadachi approksimatsii grafov”, Tez. dokl. IV Vsesoyuz. konf. po problemam teoreticheskoi kibernetiki, Novosibirsk, 1977, 150
[12] Talevnin A.S., “O slozhnosti zadachi approksimatsii grafov”, Vestn. Omskogo un-ta, 2004, no. 4, 22–24
[13] Ageev A.A., Ilev V.P., Kononov A.V., Talevnin A.S., “Vychislitelnaya slozhnost zadachi approksimatsii grafov”, Diskretnyi analiz i issledovanie operatsii. Ser. 1, 13:1 (2006), 3–15 | MR
[14] Veiner G.A., “Ob approksimatsii simmetrichnogo refleksivnogo binarnogo otnosheniya otnosheniem ekvivalentnosti”, Tr. Tallinskogo politekh. in-ta. Ser. A, 313 (1971), 45–49
[15] Fridman G.Sh., “O nekotorykh rezultatakh v zadache approksimatsii grafov”, Problemy analiza diskretnoi informatsii, IEiOOP SO AN SSSR, Novosibirsk, 1975, 125–152