The structure of isotropic reductive groups
Trudy Instituta matematiki, Tome 18 (2010) no. 1, pp. 15-27

Voir la notice de l'article provenant de la source Math-Net.Ru

We state several recent results on the structure of the group of points $G(R)$ of an isotropic reductive group $G$ over a commutative ring $R$, as an abstract group.
@article{TIMB_2010_18_1_a2,
     author = {N. A. Vavilov},
     title = {The structure of isotropic reductive groups},
     journal = {Trudy Instituta matematiki},
     pages = {15--27},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a2/}
}
TY  - JOUR
AU  - N. A. Vavilov
TI  - The structure of isotropic reductive groups
JO  - Trudy Instituta matematiki
PY  - 2010
SP  - 15
EP  - 27
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a2/
LA  - ru
ID  - TIMB_2010_18_1_a2
ER  - 
%0 Journal Article
%A N. A. Vavilov
%T The structure of isotropic reductive groups
%J Trudy Instituta matematiki
%D 2010
%P 15-27
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a2/
%G ru
%F TIMB_2010_18_1_a2
N. A. Vavilov. The structure of isotropic reductive groups. Trudy Instituta matematiki, Tome 18 (2010) no. 1, pp. 15-27. http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a2/