Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2010_18_1_a2, author = {N. A. Vavilov}, title = {The structure of isotropic reductive groups}, journal = {Trudy Instituta matematiki}, pages = {15--27}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a2/} }
N. A. Vavilov. The structure of isotropic reductive groups. Trudy Instituta matematiki, Tome 18 (2010) no. 1, pp. 15-27. http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a2/
[1] Abe E., “Avtomorfizmy grupp Shevalle nad kommutativnymi koltsami”, Algebra i analiz, 5:2 (1993), 74–90 | Zbl
[2] Borel A., “Svoistva i lineinye predstavleniya grupp Shevalle”, Seminar po algebraicheskim gruppam, Mir, M., 1973, 9–59 | MR
[3] Borel A., Tits Zh., “Reduktivnye gruppy”, Matematika. Period. sb. perev. in. st., 11:1 (1967), 43–111
[4] Bunina E.I., “Avtomorfizmy grupp Shevalle tipa $\mathrm{B}_2$ i $\mathrm{G}_2$ nad lokalnymi koltsami”, Fundam. prikl. mat., 13:4 (2007), 3–29
[5] Bunina E.I., “Avtomorfizmy grupp Shevalle tipov $\mathrm{A}_l$, $\mathrm{D}_l$ i $\mathrm{E}_l$ nad lokalnymi koltsami s 1/2”, Fundam. prikl. mat., 15:2 (2009), 35–59 | MR
[6] Bunina E.I., “Avtomorfizmy elementarnykh prisoedinennykh grupp Shevalle tipov $\mathrm{A}_l$, $\mathrm{D}_l$ i $\mathrm{E}_l$ nad lokalnymi koltsami s 1/2”, Algebra i Logika, 48:4 (2009), 443–470 | MR
[7] Vavilov N.A., “Kak uvidet znaki strukturnykh konstant?”, Algebra i analiz, 19:4 (2007), 34–68 | MR
[8] Vavilov N.A., “Vychisleniya v isklyuchitelnykh gruppakh”, Vestnik Samarskogo un-ta. Estestvennonauch. ser., 2007, no. 7, 11–24
[9] Vavilov N.A., “Vesovye elementy grupp Shevalle”, Algebra i analiz, 20:1 (2008), 34–85 | MR
[10] Vavilov N.A., “Numerologiya kvadratnykh uravnenii”, Algebra i analiz, 20:5 (2008), 9–40 | MR
[11] Vavilov N.A., “Razlozhenie unipotentov v prisoedinennom predstavlenii gruppy Shevalle tipa $\mathrm{E}_6$”, Algebra i analiz (to appear)
[12] Vavilov N.A., “$\mathrm{A}_3$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $\mathrm{E}_6$ i $\mathrm{E}_7$. II. Osnovnaya lemma”, Algebra i analiz (to appear)
[13] Vavilov N.A., Gavrilovich M.R., “$\mathrm{A}_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $\mathrm{E}_6$ i $\mathrm{E}_7$”, Algebra i analiz, 16:4 (2004), 54–87 | MR | Zbl
[14] Vavilov N.A., Gavrilovich M.R., Nikolenko S.I., “Stroenie grupp Shevalle: dokazatelstvo iz Knigi”, Zap. nauch. semin. POMI, 330, 2006, 36–76 | MR | Zbl
[15] Vavilov N.A., Kazakevich V.G., “Esche neskolko variatsii na temu razlozheniya transvektsii”, Zap. nauchn. sem. POMI, 375, 2010, 32–47 | MR | Zbl
[16] Vavilov N.A., Luzgarev A.Yu., “Normalizator gruppy Shevalle tipa $\mathrm{E}_6$”, Algebra i analiz, 19:5 (2007), 37–64 | MR
[17] Vavilov N.A., Luzgarev A.Yu., “Gruppa Shevalle tipa $\mathrm{E}_7$ v $56$-mernom predstavlenii”, Zap. nauch. semin. POMI, 386, 2011, 5–99 | MR
[18] Vavilov N.A., Luzgarev A.Yu., “Normalizator gruppy Shevalle tipa $\mathrm{E}_7$”, Algebra i analiz (to appear)
[19] Vavilov N.A., Luzgarev A.Yu., “$\mathrm{A}_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipa $\mathrm{E}_8$”, Algebra i analiz (to appear)
[20] Vavilov N.A., Luzgarev A.Yu., Pevzner I.M., “Gruppa Shevalle tipa $\mathrm{E}_6$ v $27$-mernom predstavlenii”, Zap. nauch. semin. POMI, 338, 2006, 5–68 | Zbl
[21] Vavilov N.A., Nikolenko S.I., “$\mathrm{A}_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipa $\mathrm{F}_4$”, Algebra i analiz, 20:4 (2008), 27–63 | MR
[22] Vavilov N.A., Plotkin E.B., Stepanov A.V., “Vychisleniya v gruppakh Shevalle nad kommutativnymi koltsami”, Dokl. AN SSSR, 40:1 (1990), 145–147 | MR
[23] Vavilov N.A., Stavrova A.K., “Osnovnye reduktsii v zadache opisaniya normalnykh podgrupp”, Zap. nauch. semin. POMI, 349, 2007, 30–52
[24] Vavilov N.A., Stepanov A.V., “Standartnaya kommutatsionnaya formula”, Vestn. SPbGU, ser. 1, 2008, no. 1, 9–14 | MR | Zbl
[25] Vavilov N.A., Stepanov A.V., “Nadgruppy poluprostykh grupp”, Vestn. Samarskogo un-ta. Estestvennonauchnaya ser., 2008, no. 3, 51–95 | MR
[26] Vavilov N.A., Stepanov A.V., “Esche raz o standartnoi kommutatsionnoi formule”, Vestn. SPbGU, ser. 1, 2010, no. 1, 16–22
[27] Kazakevich V.G., Stavrova A.K., “Podgruppy, normalizuemye kommutantom podgruppy Levi”, Zap. nauchn. sem. POMI, 319, 2004, 199–215 | MR | Zbl
[28] Kopeiko V.I., “Stabilizatsiya simplekticheskikh grupp nad koltsom mnogochlenov”, Mat. sb., 106:1 (1978), 94–107 | MR | Zbl
[29] Luzgarev A.Yu., “O nadgruppakh $\mathrm{E}(\mathrm{E}_6,R)$ i $\mathrm{E}(\mathrm{E}_7,R)$ v minimalnykh predstavleniyakh”, Zap. nauch. semin. POMI, 319, 2004, 216–243 | MR | Zbl
[30] Luzgarev A.Yu., “Opisanie nadgrupp $\mathrm F_4$ v $\mathrm E_6$ nad kommutativnym koltsom”, Algebra i analiz, 20:6 (2008), 148–185 | MR
[31] Luzgarev A.Yu., Nadgruppy isklyuchitelnykh grupp, Dis. ... kand. fiz.-mat. nauk, SPb., 2008
[32] Luzgarev A.Yu., “Ne zavisyaschie ot kharakteristiki invarianty chetvertoi stepeni dlya $G(\mathrm{E}_7,R)$”, Doklady RAN (to appear)
[33] Luzgarev A.Yu., “Uravneniya, opredelyayuschie orbitu starshego vesa v prisoedinennom predstavlenii”, Algebra i analiz (to appear)
[34] Luzgarev A.Yu., Stavrova A.K., “Elementarnaya podgruppa izotropnoi reduktivnoi gruppy sovershenna”, Algebra i analiz (to appear); 2010, 10 pp., arXiv: 1001.1105v1 math.AG
[35] Petrov V.A., Stavrova A.K., “Elementarnye podgruppy izotropnykh reduktivnykh grupp”, Algebra i analiz, 20:4 (2008), 160–188
[36] Platonov V.P., Rapinchuk A.S., Algebraicheskie gruppy i teoriya chisel, Nauka, M., 1991 | MR
[37] Springer T.A., “Lineinye algebraicheskie gruppy”, Itogi nauki i tekhn., Ser. sovrem. problemy mat. Fundam. napravleniya, 55, VINITI, M., 1989, 5–136 | MR
[38] Stavrova A.K., Stroenie izotropnykh reduktivnykh grupp, Dis. ... kand. fiz.-mat. nauk, SPb., 2009
[39] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl
[40] Suslin A.A., “O strukture spetsialnoi lineinoi gruppy nad koltsom mnogochlenov”, Izv. AN SSSR, ser. mat., 41:2 (1977), 235–252 | MR
[41] Suslin A.A., Kopeiko V.I., “Kvadratichnye moduli i ortogonalnye gruppy nad koltsami mnogochlenov”, Zap. nauch. semin. LOMI, 71, 1977, 216–250 | MR | Zbl
[42] Abe E., “Chevalley groups over local rings”, Tôhoku Math. J., 21:3 (1969), 474–494 | DOI | MR | Zbl
[43] Abe E., “Chevalley groups over commutative rings”, Proc. Conf. Radical Theory, Sendai, 1988, 1–23 | MR | Zbl
[44] Abe E., “Normal subgroups of Chevalley groups over commutative rings”, Contemp. Math., 83 (1989), 1–17 | MR | Zbl
[45] Abe E., Suzuki K., “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J, 28:1 (1976), 185–198 | DOI | MR | Zbl
[46] Aschbacher M., “The $27$-dimensional module for $\mathrm{E}_6$. I–IV”, Invent. Math., 89:1 (1987), 159–195 ; J. London Math. Soc., 37 (1988), 275–293 ; Trans. Amer. Math. Soc., 321 (1990), 45–84 ; J. Algebra, 191 (1991), 23–39 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR
[47] Aschbacher M., “Some multilinear forms with large isometry groups”, Geom. dedic., 25:1-3 (1988), 417–465 | DOI | MR | Zbl
[48] Bak A., “Non-abelian $\mathrm{K}$-theory: the nilpotent class of $\mathrm{K}_1$ and general stability”, K-Theory, 4 (1991), 363–397 | DOI | MR | Zbl
[49] Bak A., Hazrat R., Vavilov N., “Localization-completion strikes again: relative $\mathrm{K}_1$ is nilpotent by abelian”, J. Pure Appl. Algebra, 213 (2009), 1075–1085 | DOI | MR | Zbl
[50] Bak A., Petrov V., Tang Guoping, “Stability for quadratic $\mathrm{K}_1$”, K-Theory, 30:1 (2003), 1–11 | DOI | MR | Zbl
[51] Bak A., Vavilov N., “Normality of the elementary subgroup functors”, Math. Proc. Cambridge Philos. Soc., 118:1 (1995), 35–47 | DOI | MR | Zbl
[52] Bak A., Vavilov N., “Structure of hyperbolic unitary groups I. Elementary subgroups”, Algebra Colloquium, 7:2 (2000), 159–196 | DOI | MR | Zbl
[53] Bunina E.I., Automorphisms of Chevalley groups of type $\mathrm{F}_4$ over local rings with $1/2$, 2009, 23 pp., arXiv: math/0907.5592
[54] Chernousov V., Variations on a theme of groups splitting by a quadratic extension and Grothendieck—Serre conjecture for group schemes of type $\mathrm{F}_4$ with twivial $g_3$ invariant, , 2009 http://www.math.uni-bielefeld.de/LAG/man/354.html
[55] Costa D.L., Keller G.E., “Radix redux: normal subgroups of symplectic groups”, J. Reine Angew. Math., 427:1 (1991), 51–105 | MR
[56] Costa D.L., Keller G.E., “On the normal subgroups of $\mathrm{G}_2(A)$”, Trans. Amer. Math. Soc., 351:12 (1999), 5051–5088 | DOI | MR | Zbl
[57] Cooperstein B.N., “The fifty-six-dimensional module for $\mathrm{E}_7$. I. A four form for $\mathrm{E}_7$”, J. Algebra, 173 (1995), 361–389 | DOI | MR | Zbl
[58] Demazure M., Grothendieck A., “Schémas en groupes. I, II, III”, Lecture Notes Math., 151, 1971, 1–564; 152, 1–654; 153, 1–529
[59] Farb B., Group actions and Helly's theorem, Preprint Univ. Chicago, 2008, 17 pp.
[60] Gille Ph., “Le problème de Kneser—Tits”, Sèminaire Bourbaki, 2007, no. 983, 1–39 | MR
[61] Hahn A., O'Meara O.T., The classical groups and K-theory, Springer–Verlag, N.Y., 1989 | MR
[62] Hazrat R., Petrov V., Vavilov N., “Relative subgroups in Chevalley groups”, J. K-theory, 5:3 (2010), 603–618 | DOI | MR | Zbl
[63] Hazrat R., Stepanov A., Vavilov N., Zhang Zuhong, “On the length of commutators in unitary groups”, Israel J. Math. (to appear)
[64] Hazrat R., Vavilov N., “$\mathrm{K}_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl
[65] Hazrat R., Vavilov N., “Bak's work on the $\mathrm{K}$-theory of rings (with an appendix by Max Karoubi)”, J. K-Theory, 4 (2009), 1–65 | DOI | MR | Zbl
[66] Hazrat R., Vavilov N., Zhang Zuhong, “Relative unitary commutator calculus, and applications”, J. Algebra (to appear)
[67] Hazrat R., Vavilov N., Zhang Zuhong, “Relative commutator calculus in Chevalley groups”, J. Algebra (to appear)
[68] Hazrat R., Zhang Zuhong, “Generalized commutator formula”, Comm. Algebra (to appear)
[69] van der Kallen W., “Another presentation for Steinberg groups”, Indag. Math., 39:4 (1977), 304–312 | MR
[70] van der Kallen W., “A module structure on certain orbit sets of unimodular rows”, J. Pure Appl. Algebra, 57:3 (1989), 281–316 | DOI | MR | Zbl
[71] Klyachko A., Automorphisms and isomorphisms of Chevalley groups and algebras, 2007, 8 pp., arXiv: 0708.2256v2 | MR
[72] Loos O., “On algebraic groups defined by Jordan pairs”, Nagoya Math. J, 74 (1979), 23–66 | MR | Zbl
[73] Loos O., “Elementary groups and stability for Jordan pairs”, K-Theory, 9 (1995), 77–116 | DOI | MR | Zbl
[74] Loos O., “Steinberg groups and simplicity of elementary groups defined by Jordan pairs”, J. Algebra, 186 (1996), 207–234 | DOI | MR | Zbl
[75] Lurie J., “On simply laced Lie algebras and their minuscule representations”, Comment. Math. Helv., 166 (2001), 515–575 | DOI | MR
[76] Luzgarev A., Petrov V., Vavilov N., Explicit equations on orbit of the highest weight vector (to appear)
[77] Matsumoto H., “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl
[78] Panin I., On Grothendieck—Serre's conjecture concerning principal $G$-bundles over reductive group schemes. II, 2009, 28 pp., arXiv: 0905.1418v1 math.AG
[79] Panin I., Petrov V., Stavrova A., Grothendieck—Serre's conjecture for adjoint groups of types $\mathrm{E}_6$ and $\mathrm{E}_7$, 2009, 2 pp., arXiv: 0905.1427v2 math.AG
[80] Panin I., Stavrova A., Vavilov N., On Grothendieck—Serre's conjecture concerning principal $G$-bundles over reductive group schemes. I, 2009, 28 pp., arXiv: 0905.1418v1 math.AG
[81] Panin I., Stavrova A., Vavilov N., On Grothendieck—Serre's conjecture. I. Appendix, 2009, 10 pp., arXiv: 0910.5465v1 math.AG | MR
[82] Petrov V., Stavrova A., Grothendieck–Serre's conjecture for groups of type $\mathrm{F}_4$ with trivial $f_3$ invariant, 2009, 6 pp., arXiv: 0911.3132v1 math.AG | MR
[83] Petrov V., Stavrova A., “Tits indices over semilocal rings”, The Tits indices over semilocal rings, 16:1 (2011), 193–217 ; Препринт ПОМИ No 2, 2009, 22 с. | MR | Zbl
[84] Petrov V., Stavrova A., Jordan—Kantor pairs and algebraic groups, 2010 (to appear)
[85] Petrov V., Stavrova A., Reductive groups as automorphism groups of algebraic structures: a unified approach, 2010 (to appear)
[86] Petrov V., Stavrova A., Vavilov N., Relative elementary subgroups in isotropic reductive groups (to appear)
[87] Plotkin E., “On the stability of $\mathrm{K}_1$-functor for Chevalley groups of type $\mathrm{E}_7$”, J. Algebra, 210 (1998), 67–85 | DOI | MR | Zbl
[88] Plotkin E., Semenov A., Vavilov N., “Visual basic representations: an atlas”, Internat. J. Algebra Comput., 8:1 (1998), 61–95 | DOI | MR | Zbl
[89] Plotkin E., Stein M.R., Vavilov N., Stability of $\mathrm{K}$-functors modeled on Chevalley groups, revisited (to appear)
[90] Sivatsky A., Stepanov A., “On the word length of commutators in $\mathrm{GL}_n(R)$”, J. K-Theory, 17 (1999), 295–302 | DOI | MR
[91] Springer T.A., Veldkamp F.D., Octonions, Jordan algebras and exceptional groups, Springer, Berlin, 2000 | MR | Zbl
[92] Stavrova A., “Normal structure of maximal parabolic subgroups in Chevalley groups over commutative rings”, Algebra Coll., 16:4 (2009), 631–648 | MR | Zbl
[93] Stein M.R., “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93:4 (1971), 965–1004 | DOI | MR | Zbl
[94] Stein M.R., “Stability theorems for $\mathrm{K}_1$, $\mathrm{K}_2$ and related functors modeled on Chevalley groups”, Japan J. Math., 4:1 (1978), 77–108 | MR | Zbl
[95] Stepanov A., Vavilov N., “Decomposition of transvections: a theme with variations”, J. K-Theory, 19 (2000), 109–153 | DOI | MR | Zbl
[96] Stepanov A., Vavilov N., “On the length of commutators in Chevalley groups”, Israel J. Math. (to appear)
[97] Suzuki K., “Normality of the elementary subgroups of twisted Chevalley groups over commutative rings”, J. Algebra, 175:3 (1995), 526–536 | DOI | MR | Zbl
[98] Taddei G., “Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau”, Contemp. Math., 55, Part II (1986), 693–710 | MR
[99] Vaserstein L.N., “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J, 36:5 (1986), 219–230 | DOI | MR
[100] Vavilov N., “Structure of Chevalley groups over commutative rings”, Proc. Conf. Nonassociative algebras and related topics (Hiroshima, 1990), World Scientific, London, 1991, 219–335 | MR | Zbl
[101] Vavilov N., “Intermediate subgroups in Chevalley groups”, Groups of Lie Type and their Geometries (Como, 1993), Cambridge Univ. Press, Cambridge, 1995, 233–280 | MR | Zbl
[102] Vavilov N., “A third look at weight diagrams”, Rendiconti del Seminario Matem. dell'Univ. di Padova, 204 (2000), 1–45 | MR
[103] Vavilov N.A., “Do it yourself structure constants for Lie algebras of type $\mathrm{E}_l$”, Zap. nauch. semin. POMI, 281, 2001, 60–104 | MR | Zbl
[104] Vavilov N., “An $\mathrm{A}_3$-proof of structure theorems for Chevalley groups of types $\mathrm{E}_6$ and $\mathrm{E}_7$”, Int. J. Algebra Comput., 17:5–6 (2007), 1283–1298 | DOI | MR | Zbl
[105] Vavilov N., Luzgarev A., Stepanov A., “Calculations in exceptional groups”, Zap. Nauchn. Seminarov POMI, 373, 2009, 48–72 | MR
[106] Vavilov N., Plotkin E., “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Applicandae Math., 45:1 (1996), 73–113 | DOI | MR | Zbl
[107] Waterhouse W.C., “Automorphisms of $\det(X_{ij})$: the group scheme approach”, Adv. Math., 65:2 (1987), 171–203 | DOI | MR | Zbl