On optimization problems for graphs and~security of digital communications
Trudy Instituta matematiki, Tome 18 (2010) no. 1, pp. 116-122

Voir la notice de l'article provenant de la source Math-Net.Ru

The most developed field of the classical Extremal Graph Theory studies the maximal size of simple graphs without certain cycles. We discuss resent results on the evaluation of the maximal size of digraphs without certain commutative diagrams that satisfy certain restrictions on the number of inputs and outputs (balanced digraphs or regular directed graphs). These studies are connected with problems of constructing LDPS Codes in Coding Theory and graph based stream ciphers and graph based public keys in Cryptography. Finally we show that the combinatorial optimization problems above can be formulated in the language of integer linear programming.
@article{TIMB_2010_18_1_a11,
     author = {V. A. Ustimenko},
     title = {On optimization problems for graphs and~security of digital communications},
     journal = {Trudy Instituta matematiki},
     pages = {116--122},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a11/}
}
TY  - JOUR
AU  - V. A. Ustimenko
TI  - On optimization problems for graphs and~security of digital communications
JO  - Trudy Instituta matematiki
PY  - 2010
SP  - 116
EP  - 122
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a11/
LA  - en
ID  - TIMB_2010_18_1_a11
ER  - 
%0 Journal Article
%A V. A. Ustimenko
%T On optimization problems for graphs and~security of digital communications
%J Trudy Instituta matematiki
%D 2010
%P 116-122
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a11/
%G en
%F TIMB_2010_18_1_a11
V. A. Ustimenko. On optimization problems for graphs and~security of digital communications. Trudy Instituta matematiki, Tome 18 (2010) no. 1, pp. 116-122. http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a11/