Algebraic graph decomposition theory
Trudy Instituta matematiki, Tome 18 (2010) no. 1, pp. 99-115

Voir la notice de l'article provenant de la source Math-Net.Ru

The survey of the results of the new algebraic theory of graph decomposition ($(P,Q)$-decomposition) is presented. The examples of the effective applications of this theory to the well-known hard graph-theoretical problems are given.
@article{TIMB_2010_18_1_a10,
     author = {R. I. Tyshkevich and P. V. Skums and S. V. Suzdal'},
     title = {Algebraic graph decomposition theory},
     journal = {Trudy Instituta matematiki},
     pages = {99--115},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a10/}
}
TY  - JOUR
AU  - R. I. Tyshkevich
AU  - P. V. Skums
AU  - S. V. Suzdal'
TI  - Algebraic graph decomposition theory
JO  - Trudy Instituta matematiki
PY  - 2010
SP  - 99
EP  - 115
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a10/
LA  - ru
ID  - TIMB_2010_18_1_a10
ER  - 
%0 Journal Article
%A R. I. Tyshkevich
%A P. V. Skums
%A S. V. Suzdal'
%T Algebraic graph decomposition theory
%J Trudy Instituta matematiki
%D 2010
%P 99-115
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a10/
%G ru
%F TIMB_2010_18_1_a10
R. I. Tyshkevich; P. V. Skums; S. V. Suzdal'. Algebraic graph decomposition theory. Trudy Instituta matematiki, Tome 18 (2010) no. 1, pp. 99-115. http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a10/