Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2010_18_1_a1, author = {V. I. Benediktovich}, title = {An existence criterion of a non-crossing spanning treein the geometric complement of a convex spanning tree}, journal = {Trudy Instituta matematiki}, pages = {6--14}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a1/} }
TY - JOUR AU - V. I. Benediktovich TI - An existence criterion of a non-crossing spanning treein the geometric complement of a convex spanning tree JO - Trudy Instituta matematiki PY - 2010 SP - 6 EP - 14 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a1/ LA - ru ID - TIMB_2010_18_1_a1 ER -
%0 Journal Article %A V. I. Benediktovich %T An existence criterion of a non-crossing spanning treein the geometric complement of a convex spanning tree %J Trudy Instituta matematiki %D 2010 %P 6-14 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a1/ %G ru %F TIMB_2010_18_1_a1
V. I. Benediktovich. An existence criterion of a non-crossing spanning treein the geometric complement of a convex spanning tree. Trudy Instituta matematiki, Tome 18 (2010) no. 1, pp. 6-14. http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a1/
[1] Kratochvil J., Lubiw A., Nesetril J., “Noncrossing Subgraphs in Topological Layouts”, SIAM J. Disc. Math, 4:2 (1991), 223–244 | DOI | MR | Zbl
[2] Cerny J., Dvorak Z., Jelinek V., Kara J., “Noncrossing Hamiltonian paths in geometric graphs”, Disc. Appl. Math, 155:9 (2007), 1096–1105 | DOI | MR | Zbl
[3] Kaneko A., Kano M., Suzuki K., “Balanced Partitions and Path Covering of Two Sets of Points in the Plane”, Comput. Geom.: Theory and Applications, 13, 1999, 253–261 | MR | Zbl
[4] Abellanas M., Garcia G., Hernandez G., Noy M., Ramos P., “Bipartite embedings of trees in the plane”, Disc. Appl. Math, 93 (1999), 141–148 | DOI | MR | Zbl
[5] Benediktovich V.I., “Ostovnoe derevo bez samoperesechenii v geometricheskom dopolnenii 2-faktora”, III nauch. konf. “Teoriya raspisanii i metody dekompozitsii. Tanaevskie chteniya”, OIPI NAN Belarusi, Minsk, 2007, 15–19
[6] Karolyi G., Pach J., Toth G., Ramsey-type Results for Geometric Graphs I, DIMACS Technical Report 95–49, 1995, 10 pp.
[7] Hernando M., Hurtado A., Marquez A., Mora M., Noy M., “Geometric tree graphs of points in convex position”, Disc. Appl. Math, 93 (1999), 51–66 | DOI | MR | Zbl