An existence criterion of a non-crossing spanning treein the geometric complement of a convex spanning tree
Trudy Instituta matematiki, Tome 18 (2010) no. 1, pp. 6-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article an existence criterion of a non-crossing spanning tree in the geometric complement of a convex spanning tree has been obtained.
@article{TIMB_2010_18_1_a1,
     author = {V. I. Benediktovich},
     title = {An existence criterion of a non-crossing spanning treein the geometric complement of a convex spanning tree},
     journal = {Trudy Instituta matematiki},
     pages = {6--14},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a1/}
}
TY  - JOUR
AU  - V. I. Benediktovich
TI  - An existence criterion of a non-crossing spanning treein the geometric complement of a convex spanning tree
JO  - Trudy Instituta matematiki
PY  - 2010
SP  - 6
EP  - 14
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a1/
LA  - ru
ID  - TIMB_2010_18_1_a1
ER  - 
%0 Journal Article
%A V. I. Benediktovich
%T An existence criterion of a non-crossing spanning treein the geometric complement of a convex spanning tree
%J Trudy Instituta matematiki
%D 2010
%P 6-14
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a1/
%G ru
%F TIMB_2010_18_1_a1
V. I. Benediktovich. An existence criterion of a non-crossing spanning treein the geometric complement of a convex spanning tree. Trudy Instituta matematiki, Tome 18 (2010) no. 1, pp. 6-14. http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a1/

[1] Kratochvil J., Lubiw A., Nesetril J., “Noncrossing Subgraphs in Topological Layouts”, SIAM J. Disc. Math, 4:2 (1991), 223–244 | DOI | MR | Zbl

[2] Cerny J., Dvorak Z., Jelinek V., Kara J., “Noncrossing Hamiltonian paths in geometric graphs”, Disc. Appl. Math, 155:9 (2007), 1096–1105 | DOI | MR | Zbl

[3] Kaneko A., Kano M., Suzuki K., “Balanced Partitions and Path Covering of Two Sets of Points in the Plane”, Comput. Geom.: Theory and Applications, 13, 1999, 253–261 | MR | Zbl

[4] Abellanas M., Garcia G., Hernandez G., Noy M., Ramos P., “Bipartite embedings of trees in the plane”, Disc. Appl. Math, 93 (1999), 141–148 | DOI | MR | Zbl

[5] Benediktovich V.I., “Ostovnoe derevo bez samoperesechenii v geometricheskom dopolnenii 2-faktora”, III nauch. konf. “Teoriya raspisanii i metody dekompozitsii. Tanaevskie chteniya”, OIPI NAN Belarusi, Minsk, 2007, 15–19

[6] Karolyi G., Pach J., Toth G., Ramsey-type Results for Geometric Graphs I, DIMACS Technical Report 95–49, 1995, 10 pp.

[7] Hernando M., Hurtado A., Marquez A., Mora M., Noy M., “Geometric tree graphs of points in convex position”, Disc. Appl. Math, 93 (1999), 51–66 | DOI | MR | Zbl