Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2009_17_2_a8, author = {P. I. Sobolevsky and S. V. Bahanovitch}, title = {Polyhedron approximation of tile set}, journal = {Trudy Instituta matematiki}, pages = {84--93}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2009_17_2_a8/} }
P. I. Sobolevsky; S. V. Bahanovitch. Polyhedron approximation of tile set. Trudy Instituta matematiki, Tome 17 (2009) no. 2, pp. 84-93. http://geodesic.mathdoc.fr/item/TIMB_2009_17_2_a8/
[1] Ramanujam J., Sadayappaan P., “Tiling of iteration spaces for multicomputers”, Proc. of Int. Conf. on Parallel Processing, 2 (1990), 179–186 | MR
[2] Boulet P., Darte A., Risset T., Robert Y., “(Pen)-ultimate tiling?”, Integration, The VLSI J., 17 (1994), 33–51 | DOI
[3] Xue J., “Communication-minimal tiling of uniform dependence loops”, J. of Parallel and Distributed Computing, 1:42 (1997), 42–59 | DOI
[4] Schreiber R., Dongarra J., Automatic blocking of nested loops, Tech. report 90.38, RIACS, 1997
[5] Ohta H., Saito Y., Kainaga M., Ono H., “Optimal tile size adjustment in compiling general DOACROSS loop nests”, Proc. of Int. Conf. on Supercomputing, ACM Press, 1995, 270–279
[6] Hodzic E., Shang W., “On supernode transformation with minimized total running time”, IEEE Trans. Parallel and Distributed Systems, 9:5 (1998), 417–428 | DOI
[7] Hodzic E., Shang W., “On-time optimal supernode shape”, IEEE Trans. Parallel and Distributed Systems, 13:10 (2002), 1220–1223 | DOI
[8] Bakhanovich S.V., Sobolevskii P.I., “Otobrazhenie algoritmov na vychislitelnye sistemy s raspredelennoi pamyatyu: optimizatsiya tailinga dlya odno- i dvumernykh topologii”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2006, no. 2, 106–112 | MR
[9] Bakhanovich S.V., Sobolevskii P.I., “Optimizatsiya tailinga pri LSGP strategii otobrazheniya algoritmov na superkompyutery s raspredelennoi pamyatyu”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2007, no. 3, 113–118