A linear algorithm for computing the multiclique cover number of a series-parallel graph
Trudy Instituta matematiki, Tome 17 (2009) no. 1, pp. 90-102
Voir la notice de l'article provenant de la source Math-Net.Ru
A multiclique is a complete multipartite subgraph of a graph. A multiclique cover of a graph $G$ is a collection of multicliques of $G$ whose edge sets cover the edge set of $G$ (every edge of $G$ belongs to at least one multiclique of the collection). The multiclique cover number, $mc(G)$, of a graph $G$ is the minimum number of multicliques in a multiclique cover of $G$. A linear-time algorithm for computing the multiclique cover number of a (simple) series-parallel graph is given.
@article{TIMB_2009_17_1_a8,
author = {V. V. Lepin},
title = {A linear algorithm for computing the multiclique cover number of a series-parallel graph},
journal = {Trudy Instituta matematiki},
pages = {90--102},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2009_17_1_a8/}
}
V. V. Lepin. A linear algorithm for computing the multiclique cover number of a series-parallel graph. Trudy Instituta matematiki, Tome 17 (2009) no. 1, pp. 90-102. http://geodesic.mathdoc.fr/item/TIMB_2009_17_1_a8/