A linear algorithm for computing the multiclique cover number of a series-parallel graph
Trudy Instituta matematiki, Tome 17 (2009) no. 1, pp. 90-102

Voir la notice de l'article provenant de la source Math-Net.Ru

A multiclique is a complete multipartite subgraph of a graph. A multiclique cover of a graph $G$ is a collection of multicliques of $G$ whose edge sets cover the edge set of $G$ (every edge of $G$ belongs to at least one multiclique of the collection). The multiclique cover number, $mc(G)$, of a graph $G$ is the minimum number of multicliques in a multiclique cover of $G$. A linear-time algorithm for computing the multiclique cover number of a (simple) series-parallel graph is given.
@article{TIMB_2009_17_1_a8,
     author = {V. V. Lepin},
     title = {A linear algorithm for computing the multiclique cover number of a series-parallel graph},
     journal = {Trudy Instituta matematiki},
     pages = {90--102},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2009_17_1_a8/}
}
TY  - JOUR
AU  - V. V. Lepin
TI  - A linear algorithm for computing the multiclique cover number of a series-parallel graph
JO  - Trudy Instituta matematiki
PY  - 2009
SP  - 90
EP  - 102
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2009_17_1_a8/
LA  - ru
ID  - TIMB_2009_17_1_a8
ER  - 
%0 Journal Article
%A V. V. Lepin
%T A linear algorithm for computing the multiclique cover number of a series-parallel graph
%J Trudy Instituta matematiki
%D 2009
%P 90-102
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2009_17_1_a8/
%G ru
%F TIMB_2009_17_1_a8
V. V. Lepin. A linear algorithm for computing the multiclique cover number of a series-parallel graph. Trudy Instituta matematiki, Tome 17 (2009) no. 1, pp. 90-102. http://geodesic.mathdoc.fr/item/TIMB_2009_17_1_a8/