Power and exponential expansions of solutions for the equation of the $K_{II}$ hierarchy
Trudy Instituta matematiki, Tome 16 (2008) no. 2, pp. 97-104

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider fourth order ordinary differential equation, which is a particular case of the $K_{II}$ hierarchy when $n=1$. We applied the Newton polygons method, evolved by A. D. Bruno. We used that method to find power, exponential expansions and their exponential additions for solutions of the equation. As the result we received a four-parametric family of holomorphic expansions, four asymptotic expansions, four families of polar expansions, holomorphic expansions around infinity and their exponential additions. When $\beta=0$ we had the particular cases of the expansions listed above, noted that for the holomorphic near infinity expansions the particular case were four exponential expansions.
@article{TIMB_2008_16_2_a9,
     author = {M. S. Nialepka},
     title = {Power and exponential expansions of solutions for the equation of the $K_{II}$ hierarchy},
     journal = {Trudy Instituta matematiki},
     pages = {97--104},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a9/}
}
TY  - JOUR
AU  - M. S. Nialepka
TI  - Power and exponential expansions of solutions for the equation of the $K_{II}$ hierarchy
JO  - Trudy Instituta matematiki
PY  - 2008
SP  - 97
EP  - 104
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a9/
LA  - ru
ID  - TIMB_2008_16_2_a9
ER  - 
%0 Journal Article
%A M. S. Nialepka
%T Power and exponential expansions of solutions for the equation of the $K_{II}$ hierarchy
%J Trudy Instituta matematiki
%D 2008
%P 97-104
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a9/
%G ru
%F TIMB_2008_16_2_a9
M. S. Nialepka. Power and exponential expansions of solutions for the equation of the $K_{II}$ hierarchy. Trudy Instituta matematiki, Tome 16 (2008) no. 2, pp. 97-104. http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a9/