Relaxation of the polytope of the asymmetric traveling salesman problem on the basis of the cone of generalized Supnick's matrices
Trudy Instituta matematiki, Tome 16 (2008) no. 2, pp. 23-36

Voir la notice de l'article provenant de la source Math-Net.Ru

For the asymmetric traveling salesman problem, we describe a relaxation polytope that is based on the cone of generalized Supnick matrices and belongs to the space of minimal dimension. The description of the relaxation polytope is obtained by means of the earlier proposed general method [6] to construct relaxations for the permutation polytopes generated by subgroups of the symmetric group. The number of inequalities in the description is of factorial order of the size of the problem.
@article{TIMB_2008_16_2_a2,
     author = {V. M. Demidenko},
     title = {Relaxation of the polytope of the asymmetric traveling salesman problem on the basis of the cone of generalized {Supnick's} matrices},
     journal = {Trudy Instituta matematiki},
     pages = {23--36},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a2/}
}
TY  - JOUR
AU  - V. M. Demidenko
TI  - Relaxation of the polytope of the asymmetric traveling salesman problem on the basis of the cone of generalized Supnick's matrices
JO  - Trudy Instituta matematiki
PY  - 2008
SP  - 23
EP  - 36
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a2/
LA  - ru
ID  - TIMB_2008_16_2_a2
ER  - 
%0 Journal Article
%A V. M. Demidenko
%T Relaxation of the polytope of the asymmetric traveling salesman problem on the basis of the cone of generalized Supnick's matrices
%J Trudy Instituta matematiki
%D 2008
%P 23-36
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a2/
%G ru
%F TIMB_2008_16_2_a2
V. M. Demidenko. Relaxation of the polytope of the asymmetric traveling salesman problem on the basis of the cone of generalized Supnick's matrices. Trudy Instituta matematiki, Tome 16 (2008) no. 2, pp. 23-36. http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a2/